

Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Karel Klíma

Customizable Linked Data Browser

Department of Software Engineering

Supervisor of the master thesis: doc. Mgr. Martin Nečaský, Ph.D.

Study programme: Informatics

Specialization: Software Systems

Prague 2015

I would like to thank my supervisor, doc. Mgr. Martin Nečaský, Ph.D., for the

patient guidance, encouragement and advice he has provided throughout my time as

his student. I have been extremely lucky to have a supervisor who cared so much about

my work, and who responded to my questions and queries so promptly.

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

Prague, 31 July 2015 Karel Klíma

Název práce: Přizpůsobitelný prohlížeč pro Linked Data

Autor: Karel Klíma

Katedra / Ústav: Katedra softwarového inženýrství

Vedoucí diplomové práce: doc. Mgr. Martin Nečaský, Ph.D.

Abstrakt: Cílem této práce je prozkoumat a identifikovat klíčové aspekty problematiky

explorace dat publikovaných v souladu s principy Linked Data a navrhnout a

implementovat webovou aplikaci, která bude sloužit jako prohlížeč těchto dat, jenž

bude dále zahrnovat možnosti vyhledávání a modifikace vzhledu zobrazení

procházených dat. Na rozdíl od stávajících řešení budou moci uživatelé aplikace

poskytnout vlastní šablony, které mohou definovat alternativní zobrazení určitých typů

dat v rámci prostoru Linked Data, případně budou moci upravovat styl aplikace a

prezentace dat pomocí jiných metod.

Klíčová slova: Linked Data, RDF, prohlížeč dat

Title: Customizable Linked Data Browser

Author: Karel Klíma

Department / Institute: Department of Software Engineering

Supervisor of the master thesis: doc. Mgr. Martin Nečaský, Ph.D.

Abstract: The aim of this thesis is to identify key requirements for exploring Linked

Data and design and implement a web application which serves as a Linked Data

browser, including search and customization features. In comparison to existing

approaches it will enable users to provide templates which define a visual style for

presentation of particular types of Linked Data resources. Alternatively, the

application can provide other means of altering the presentation of data or the

appearance of the application.

Keywords: Linked Data, RDF, data browser

Contents

1 Introduction .. 1

1.1 Problem statement ... 2

1.2 Goals .. 3

1.3 Thesis outline .. 4

2 Preliminaries .. 5

2.1 Resource Description Framework ... 5

2.2 Triple store .. 7

2.3 SPARQL Query Language .. 8

2.4 SPARQL Query Service .. 11

2.5 Representational State Transfer ... 11

3 Related work .. 12

3.1 Fundamental features of an ideal Linked Data browser 12

3.2 Comparison of existing Linked Data browsers ... 15

3.3 Description of existing Linked Data browsers .. 16

3.4 Summary ... 26

4 Analysis .. 27

4.1 Customization requirements .. 27

4.2 Functional requirements .. 29

4.3 Non-functional requirements ... 32

5 Design and Implementation ... 34

5.1 Deployment and employed technologies .. 34

5.2 Architecture and data flow overview .. 35

5.3 Resource description ... 37

5.4 Data presentation and customization ... 45

5.5 Authentication and authorization .. 50

5.6 Key server-side components ... 51

5.7 Key client-side components .. 54

5.8 Supported SPARQL endpoints .. 57

5.9 Project directory structure ... 57

6 Evaluation .. 59

6.1 Demonstration of browser customization .. 59

6.2 Performance ... 72

6.3 Evaluation summary .. 73

7 Conclusion ... 74

7.1 Achieved goals .. 74

7.2 Future work ... 74

Bibliography ... 76

List of Tables.. 78

List of Figures .. 79

List of Abbreviations.. 81

Attachments.. 82

1

1 Introduction

Since its early years, the World Wide Web has been the most invaluable source of

information in the entire world. The ever growing body of interlinked documents

comprising almost a billion of active websites contains unimaginable amount of

information. Unfortunately, the data are not always easily accessible or recognizable,

as they often lack the most important thing to understand it – the semantics.

Traditionally, the web documents served only one purpose – to present the

information to the reader, or, in other words, to take raw data, enhance it with templates

and styles and display it to the user in a fashionable way. However convenient this

transformation is for the user, one of the gravest side effects is that the data generally

lose some of their semantics, if not all of it, rendering them complicated for machine

processing. The reason is that the key technologies used for building web documents

were not really designed with data semantics in mind. The HTML (HyperText Markup

Language) specification defines some basic content relations, for example it provides

means to annotate headings, paragraphs, lists or tables, which is clearly not sufficient

when managing and presenting complex data.

Over the years, numerous projects and initiatives that tried to incorporate

semantics to HTML arose, the most prominent of them being the Semantic Web, [1]

which is an extension of WWW through standards that promote common data formats

and exchange protocols. The standards provided can be used to describe data entities

in existing web documents, but the most important part is the introduction of relations

between particular data entities and data sets, resulting in a web of data. This collection

of interrelated datasets is referred to as Linked Data. The main philosophy behind

Linked Data is that by interconnecting data sets the total value of the data is increased

– many common things are described in multiple data sets, and by connecting these

data sets with linking identifiers, it is possible to leverage the shared knowledge. In

other words, exploring one particular data entity permits the user to follow

interconnecting links to related entities, in theory, indefinitely.

Technically, Linked Data refers to data published on the Web in such a way that

it is machine-readable, its meaning is explicitly defined, it is linked to other external

data sets and can in turn be linked to from external data sets.

2

 Web of Documents Web of Data

Analogy A global file system A global database

Primary objects Documents
Things, or descriptions of

things

Links between Documents
Things, including

documents

Degree of structure in

objects
Low High

Semantics of content and

links
Implicit Explicit

Designed for Human consumption Machines first

Table 1 Comparison of the Web of Documents and Web of Data

The Linked Data ecosystem is based on the following principles providing

guidance for publishing data on the Web, introduced by Tim Berners-Lee: [3]

1. Use URIs1 to identify things.

2. Use HTTP2 URIs so that these things can be looked up.

3. Provide useful information about what a name identifies when it is

looked up, using open standards.

4. Refer to other things using their HTTP URI-based names.

Thanks to these principles, it is possible to consider the Web of Data to be a gigantic

global database, existing in parallel to the Web of Documents.

1.1 Problem statement

With significant volumes of Linked Data being published on the Web, numerous

efforts are underway to research and build applications that exploit this web of data.

The applications can be classified to three categories: Linked Data browsers, Linked

Data search engines, and domain-specific Linked Data applications. [2] Application

from each category are developed with different goals in mind – the browsers’ purpose

is to display generic data entities the user knows about and provide navigation to

1 Uniform Resource Identifier – a strings that identifies a particular entity, the set of all URIs is a superset

of all URLs (Uniform Resource Locator)
2 HyperText Transfer Protocol

3

related entities, the search engines aim to look for data entities the user does not know

and finally the domain-specific Linked Data applications usually provide means and

methods to present data from particular fields.

However, for effective exploration of Linked Data, it is necessary to combine

these three approaches and create a software product that leverages all the mentioned

applications’ features and strengths.

In comparison to other databases, Linked Data have specific features – both

positive and negative – that may represent obstacles application developers have to

overcome. Some of the biggest problems are these:

1. Distributed nature of Linked Data – plurality of data sources.

2. Decentralized nature of data semantics – there is no universal data

specification, the publishers can provide own specifications or utilize

existing ones, often combining both of these principles.

3. Incomplete or invalid data – opposed to relational databases, Linked Data

entities may not abide the data specification.

4. Infinity – Linked Data entities are potentially infinite, there is not any

limit on the number of relations that connect a particular data entity to

others.

These problems illustrate that the world of Linked Data is a world of uncertainty,

and any developer of applications leveraging the Linked Data must bear this paradigm

in mind.

Due to this indeterminism of Linked Data, their exploration and adequate

presentation to users is undoubtedly a non-trivial task.

1.2 Goals

The aim of this thesis is to identify key requirements for exploring Linked Data and

design and implement a web application which serves as a Linked Data browser,

including search and customization features.

In comparison to existing approaches it will enable users to provide templates

which define a visual style for presentation of particular types of Linked Data

4

resources. Users will be allowed to define their own templates. Before showing a

chosen resource to a user, the browser will identify available templates which can be

applied to the resource. If there are more templates identified, the browser will use the

priorities defined by the user to choose an appropriate template.

One of the main goals of the thesis it to identify existing or develop own

language for specification of templates.

1.3 Thesis outline

The structure of the thesis is organized as follows.

The second chapter provides the reader with an overview of essential Linked

Data principles, technologies and related resources.

In the third chapter, existing Linked Data browsers are identified and compared,

and a model of an ideal browser is presented.

The fourth chapter provides analysis of the problem and defines general

requirements and gives possible solutions. Based on the analysis, the fifth chapter

suggest a design of the browser and presents key design and implementation decisions.

The sixth chapter evaluates the developed application from the viewpoints of

customization features of the application and performance.

Finally, the conclusion assesses achieved goas and provides an overview of

possible future work.

5

2 Preliminaries

In this chapter basic concepts and definitions that are used throughout this thesis are

introduced. Discussing these topics in-depth is beyond the scope of this thesis; only

the required basic information will be described.

2.1 Resource Description Framework

The Resource Description Framework (RDF), is a W3C3 recommendation for

representation resources in the World Wide Web. RDF extends the linking structure

of the Web to use URIs to name the relationship between things as well as the two

ends of the link (this is usually referred to as a “triple”). Using this simple model, it

allows structured and semi-structured data to be mixed, exposed, and shared across

different applications. [4]

Using the RDF, a particular data resource is described using an unordered set of

triples. Each triple is of form (subject, predicate, object). The triple denotes that the

resource (subject) has a relation (predicate) to another resource (object). This linking

structure forms a directed, labeled graph, where the edges represent the named link

between two resources, represented by the graph nodes.

RDF can be expressed using various formats, including:

 Turtle4 – compact and human-friendly language

 RDFa5 – enhancing web pages by encoding special RDF attributes

inside HTML source code

 JSON-LD6 – JavaScript Object Notation for Linking Data

2.1.1 Turtle serialization

Consider the sentence: “Tim Berners-Lee is the author of the Internet.” This phrase

contains two resources – Tim Berners-Lee and the Internet, (subject and object)

whereas the part “is the author of” represents a relation between those resources

(predicate). The following example shows the expression of these facts in Turtle:

3 World Wide Web Consortium, http://www.w3.org
4 Turtle: http://www.w3.org/TR/turtle/
5 Resource Description Framework in Attributes: http://www.w3.org/TR/xhtml-rdfa-primer/
6 JSON for Linking Data: http://www.w3.org/TR/json-ld/

6

<http://example.org/person/Tim_Berners-Lee>

 <http://example.org/relation/author>

 <http://example.org/thing/The_Internet> .

Figure 1 Example of Turtle syntax

It is necessary to emphasize that the predicate is a resource too, and is therefore

identified by its own URI. Being a resource, it can be a subject or an object of relations

too, even though its primary reason for existence is to express a property.

2.1.2 RDFa serialization

RDFa (Resource Description Framework in Attributes) is a technique that allows

adding structured data to HTML pages directly: it provides a set of markup attributes

to augment the visual information on the Web with machine-readable hints. The key

feature of this serialization is that it permits expressing RDF data using RDFa directly

in HTML without breaking the HTML code, and is therefore perfect for enriching

existing human-readable content of Web pages with machine-readable data.

<html>

<head> ... </head>

<body>

<div resource="http://example.com/alice/posts/trouble_with_bob">

 <h2 property="http://purl.org/dc/terms/title">The Trouble with

Bob</h2>

 <p>Date: <span

property="http://purl.org/dc/terms/created">2011-09-10</p>

 ...

</div>

</body>

</html>

Figure 2 Example of RDFa syntax

The example above is equivalent to the following Turtle markup:

7

@prefix dcterms: <http://purl.org/dc/terms/>

<http://example.com/alice/posts/trouble_with_bob>

 dcterms:title “The Trouble with Bob” ;

 dcterms:created “2011-09-10”^xsd:date .

Figure 3 Advanced example of Turtle syntax

2.1.3 JSON-LD serialization

JSON-LD is a lightweight Linked Data format. It is easy for humans to read and write.

It is based on the already successful JSON format and provides a way to help JSON

data interoperate at Web-scale. JSON-LD is an ideal data format for programming

environments and REST Web services. [5] Being expressed using the syntax of JSON,

it is implicitly supported by every JavaScript platform, i.e. web browsers or Node.js

server side environment.

{

 "@context": "http://json-ld.org/contexts/person.jsonld",

 "@id": "http://dbpedia.org/resource/John_Lennon",

 "name": "John Lennon",

 "born": "1940-10-09",

 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"

}

Figure 4 Example of JSON-LD syntax

2.2 Triple store

A triple store is a database designed to store and retrieve identities that are constructed

from triplex collections of strings (sequences of letters). These triplex collections

represent a subject-predicate-object relationship that more or less corresponds to the

definition put forth by the RDF standard. [6]

Triple stores can be both primary and secondary sources of data. In addition to

serving as a traditional original data layer, they can be used for storing RDF data

originally provided for example as RDFa enhancement of HTML Web pages.

Mirroring the data to the triple store permits users to query the data, which is otherwise

hard at best, considering the data can be scattered across multiple Web documents.

8

2.3 SPARQL Query Language

SPARQL7 is an RDF query language, that is, a semantic query language for databases,

able to retrieve and manipulate data stored in RDF format. It was made a standard by

the RDF Data Access Working Group (DAWG) of the World Wide Web Consortium,

and is recognized as one of the key technologies of the semantic web. [7]

In case of queries that read data from the database, SPARQL language

specification defined four different query types that serve different purposes.

2.3.1 SELECT query

Probably the most common SPARQL query type is the SELECT query. Similar to the

SQL SELECT queries in relational databases, it too returns a table-formatted

collection of values, one row for every tuple that corresponds to the possible partial

result of the query, i.e. the specified conditions. The following example shows a query

to get name and email values of every person in the data set.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?email

WHERE {

 ?person a foaf:Person.

 ?person foaf:name ?name.

 ?person foaf:mbox ?email.

}

Figure 5 Example of a SELECT SPARQL query

A result of a particular SELECT query can be further modified, restricted or

aggregated by parameters common in the world of relation databases, for example

GROUP BY, ORDER BY, LIMIT or OFFSET.

2.3.2 CONSTRUCT query

A CONSTRUCT query is used to extract information from a SPARQL endpoint and

transform the results into valid RDF – a graph of triples. This is useful for further

serialization of the result that persists the RDF properties, for example to JSON-LD

7 SPARQL Protocol and RDF Query Language. http://www.w3.org/TR/sparql11-overview/

9

notation, which represent an ideal transmission format for web based Linked Data

applications, as the JSON is already widely used in this field.

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {

 ?X vCard:FN ?name .

 ?X vCard:TITLE ?title .

}

FROM <http://www.w3.org/People/Berners-Lee/card>

WHERE {

 OPTIONAL { ?X foaf:name ?name . FILTER isLiteral(?name) . }

 OPTIONAL { ?X foaf:title ?title . FILTER isLiteral(?title) . }

}

Figure 6 Example of a CONSTRUCT SPARQL query

The example presented in Figure 6 describes a method of translating data from

one vocabulary to another. A CONSTRUCT query is obviously versatile and can be

utilized for various use cases, the most prominent one being transformation of any of

the bound variables (prefixed by a question mark, for example the ?name variable) to

valid RDF data. For example, using this method it is possible to convert table-

formatted data projected by the SELECT query into RDF triples.

PREFIX : <http://custom.vocabulary/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT {

 <http://example.com/People/Karel> :property ?property

}

WHERE {

 SELECT DISTINCT ?property

 WHERE {

 <http://example.com/People/Karel> ?property [] .

 }

 LIMIT 5

}

Figure 7 Advanced example of a CONSTRUCT SPARQL query

10

The previous example also illustrates the possibility to leverage SELECT

specific properties8 like LIMIT or ORDER BY while maintaining the RDF-compliant

output provided by CONSTRUCT expression by introducing a custom resource that

acts as a property.

2.3.3 ASK query

Applications can use the ASK form to test whether or not a query pattern has a solution.

No information is returned about the possible query solutions, just whether or not a

solution exists. [8] Thus, the returning value is either true or false.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

ASK { ?x foaf:name "Alice" }

Figure 8 Example of an ASK SPARQL query

2.3.4 DESCRIBE query

The DESCRIBE form returns a single result RDF graph containing RDF data about

resources. This data is not prescribed by a SPARQL query, where the query client

would need to know the structure of the RDF in the data source, but, instead, is

determined by the SPARQL query processor. [8] The DESCRIBE form takes each of

the resources identified in a solution and assembles a single RDF graph by taking

whatever information is available about the particular resources, including the target

RDF Dataset.

The fact that the DESCRIBE query is dependent on the configuration of the

query service, and therefore not standardized, renders it rather difficult to be used in

Linked Data applications, as the resulting graph of such a query may differ on various

platforms, even if the underlying data were identical.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DESCRIBE ?x WHERE { ?x foaf:mbox <mailto:alice@org> }

Figure 9 Example of a DESCRIBE SPARQL query

8 It is actually possible to use LIMIT, ORDER BY and other clauses in a SPARQL CONSTRUCT

query, but it behaves differently from the SELECT query, for example the LIMIT clause limits the total

number of fetched triples, which can cause the resulting graph or array of graphs to be incomplete. In

addition, the output of the CONSTRUCT query is a graph, which is by definition unordered.

11

2.4 SPARQL Query Service

A SPARQL Query Service (often referred to by the informal term SPARQL endpoint)

is a service occupying a specific URI to which SPARQL queries can be sent using the

HTTP protocol and which returns results to those queries as a response. Generally, it

is a service associated with a particular graph store, usually performing queries on

existing local datasets. From the users’ point of view it can be seen as a Web interface

of a hidden RDF graph store.

It is common for a SPARQL endpoint to show a HTML form and enable the user

to input the query directly if no query is submitted to the endpoint’s URI as a parameter

of a GET or POST HTTP request.

With the SPARQL 1.1 update the notion of a SPARQL Query Services becomes

more general since it is possible to send Updates as well as Queries using SPARQL or

to use HTTP operation in a RESTful manner. [9]

2.5 Representational State Transfer

Representational State Transfer (REST) is a software architecture style for building

scalable web services. [10] So called RESTful systems typically communicate over

the HTTP protocol with the same HTTP instructions (GET, POST, PUT, DELETE)

that conventional Web browsers use to communicate with remote servers while

retrieving or sending data.

A RESTful interface consists of a collection of resources, upon which the

particular requests are performed, each resource typically corresponds with a particular

URI. Generally, the interface is used for CRUD operations crate, read, update, delete

that correspond to the aforementioned HTTP instructions.

As the name suggest, the RESTful services are stateless, the client context is not

stored on the server between requests and must therefore be included in each and every

request the client makes, should the state be maintained.

12

3 Related work

This chapter examines and compares existing solutions for browsing Linked Data. The

chapter is organized into three parts. Firstly, general requirements for exploring Linked

Data are presented and a model example of an ideal Linked Data browser is suggested.

The second part provides comparison of existing browsers from the perspective of

properties of the model ideal solution. Lastly, each existing product is briefly described

and its fundamental and distinctive features are emphasized.

3.1 Fundamental features of an ideal Linked Data browser

Before compiling a list of basic properties of an ideal Linked Data browser, it is

desirable to take a step back and think about the heart of the matter – the purpose of

existence of such a browser. There is no need to reinvent the wheel. Tim Berners-Lee,

the father of the Internet and author of Linked Data principles already described this

matter in the proposal of the Tabulator project:

“A goal of a generic semantic browser is serendipitous re-use: while searching

for a solution to a problem, I discover and successfully use data, which I hadn’t

thought of using. I may not have known it existed, or I may not have realized that it

was connected to the problem at hand. On the other hand, I may have known it existed,

but not realized that it was now on the semantic web of linked data. A similar goal is

that while idly browsing with a general interest in mind, I discover an interesting

possibility which had not occurred before. The goal then is that, as with the HTML

web, the value is the re-use of information in ways that are unforeseen by the publisher,

and often unexpected by the consumer.” [15]

With this goal in mind, we can now discuss desired properties of an ideal generic

Linked Data browser further.

3.1.1 Target platform

Considering the fact that the Web of Data is a part of the Internet, it makes perfect

sense to access it using a web browser, a software that is already commonly used to

access documents on the web. It is therefore more than suitable for our model Linked

Data browser to be a web-based application.

13

One can argue that platform-specific applications provide better user experience,

which is an essential component of any good software product. This proposition,

however right it may have been in the past, has been negated by an array of

technologies that have risen in recent years, especially with a connection to new kinds

of devices accessing the web such as mobile phones or tablets. With the ascent of those

devices a new user interface design methodology was invented – a responsive web

design. It is an approach aimed at crafting web sites to provide an optimal viewing and

interaction experience – easy reading and navigation with a minimum of resizing,

panning, and scrolling – across a wide range of devices, especially with a regard to a

display size. Today, it is absolutely necessary to implement such a design when

developing a web application, as the Internet traffic from the non-traditional devices

is ever increasing.

3.1.2 Source of the data

Generally, there are two major approaches to extract information from the Web of

Data: the first is direct querying of a SPARQL endpoint, the second is dereferencing a

URI containing either RDF data or a HTML web page enhanced with RDF

annotations. In the early years of the Linked Data phenomenon existence, most

browsers accessed the semantic data directly using the second approach, for example

applications such as Tabulator, [11] Marbles, [12] Disco9, Zitgist data viewer or

OpenLink Data Explorer.10 Unfortunately, most of these browsers are not maintained

anymore and are superseded by modern solutions leveraging SPARQL endpoint

access.

Firstly, accessing Linked Data through a SPARQL query service is arguably

easier and much more effective than parsing web pages with each user request.

Secondly, websites that publish data in RDF format are presumably backed by an RDF

data store and can therefore expose their data through a SPARQL endpoint. Even it is

not the case and the RDF data published on a website are indeed the original source of

the information, it is suitable for that information to be extracted only once using data

mining techniques and to be stored in a separate database. In fact, chances are that if

there is any information in the form of RDF on a website, it is likely to be already

mirrored on some of the existing public data stores. Finally, it may be easier to build

9 Disco. http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/
10 OpenLink Data Explorer. http://www.w3.org/wiki/OpenLinkDataExplorer

14

a quality data scraper11 and a separate data browser than an application combining both

functionalities.

To summarize, our model of an ideal Linked Data browser should embrace the

SPARQL access when obtaining the data, as the data mining tasks can and should be

preferable performed by other tools. Besides, there are already far more superior

applications tailored specifically to explore the data embedded in web sites and

providing the best user experience possible – the web browsers.

3.1.3 Exploration capabilities

An ideal Linked Data browser should provide users with exploratory features not only

to browse known data, but first and foremost to discover new information and

connections between data. Basic search functionality should be available as well, for

users generally do not know a URI of a resource they look for, and even if they do, it

might be convenient to type some key words and reach the desired resource, than

typing its full URI.

Browsing of Linked Data essentially means traversing from one resource to

another, which requires presenting all the possible relations for each resource that is

displayed to the user. Considering the fact that in the world of Linked Data the relations

are in fact edges of an oriented graph, it is necessary to examine both “outgoing” and

“incoming” connections, that is, relations where a particular resource figures both as a

subject and as an object.

Also, it is common that there are multiple data sets contained in separate graphs

present in one data store that is served by a SPARQL endpoint. Should such

circumstances appear, the browser ought to display the array of graphs to the user and

enable the user to select one or more of them to restrict the data domain to browse or

search in.

3.1.4 Big data management

As was already explained in the introduction of this thesis, one of the properties of

Linked Data is an unrestricted number of connection between resources. That means

that one resource may contain thousands or millions of connections. The browser

11 A tool used to extract data from web resources like web pages.

15

should assume such cases and provide users with means to explore and understand the

relations.

3.1.5 Customization options

The browser should enable the data presentation to be customized, that is, to provide

means of overriding default display of data for particular data types. If plausible, some

form of customization should be available to end users that do not necessarily possess

extensive knowledge of RDF of Linked Data phenomena.

3.2 Comparison of existing Linked Data browsers

The table below shows a comparison of identified major existing solutions. The scope

of the comparison is based on the features of an ideal Linked Data browser described

in previous paragraphs.

Comparison of existing

Linked Data browsers

Legend:

W ~ Web

E ~ Endpoint

B ~ Both

S ~ Silverlight

T
ab

u
la

to
r

M
ar

b
le

s

E
x
p
lo

ra
to

r

Q
u
ic

k
 a

n
d
 D

ir
ty

 B
ro

w
se

rs

O
p
en

L
in

k
 F

ac
et

ed
 B

ro
w

se
r

O
o
b
ia

n
 I

n
si

g
h
t

L
O

D
L

iv
e

G
ra

p
h
it

y
 C

li
en

t

Ju
st

in
ia

n

Target platform W W W W W S W W W

Data source W W B B E E E E E

Traversing capabilities ● ● ● ● ● ● ● ● ●

Functionality out of the box ● ● ● ● ● ● ●

Multiple data source support ● ● ● ●

Search capabilities ● ● ● ●

Inverse connections ● ● ● ● ● ●

Graph restrictions ● ● ● ●

Smart big data handling ● ● ● ●

Customization options ● ● ●

Responsive features ● ●

Table 2 Comparison of existing Linked Data browsers

16

3.3 Description of existing Linked Data browsers

3.3.1 Tabulator

The Tabulator project12 is a generic data browser and editor. Using outline and table

modes, it provides a way to browse RDF data on the web. It can be used as a browser

extension – currently available for Firefox and Chrome (experimental) – or as a

standalone JavaScript library. It is extensible through various panes which act as read

write data apps, therefore offering various views on particular data. [11] The main idea

behind the project is to present data in an outline mode, opposed to the traditional

circle-and-arrow diagrams most RDF visualizers use.

Figure 10 Tabularor Linked Data browser

12 The Tabulator. http://www.w3.org/2005/ajar/tab

17

3.3.2 Marbles

Marbles13 is a server-side application that formats Semantic Web content for HTML

clients using Fresnel14 lenses and formats. By performing all formatting, data retrieval

and storage activities on the server side rather than on a potentially thinly equipped

client, the view generation can touch on large amounts of data and requests can be

answered relatively quickly. [12]

Figure 11 Marbles Linked Data browser

13 Marbles. http://mes.github.io/marbles/
14 Fresnel – Display Vocabulary for RDF. http://www.w3.org/2005/04/fresnel-info/

18

3.3.3 Explorator

Explorator is an open-source exploratory search tool for RDF graphs, implemented in

a direct manipulation interface metaphor. It implements a custom model of operations,

and also provides a Query-by-example interface. Additionally, it provides faceted

navigation over any set obtained during the operations in the model that are exposed

in the interface. It can be used to explore both a SPARQL endpoint as well as an RDF

graph in the same way as traditional RDF browsers. [13]

In comparison to Tabulator, Explorator’s target group of users are mostly IT

specialists, as basic knowledge to RDF principles is required to effectively use the

application. Explorator also does not provide any customization options for the data

presentation.

Figure 12 Explorator Linked Data browser

19

3.3.4 Quick and Dirty Browsers

Quick and Dirty RDF Browser15 and Quick and Dirty SPARQL Browser16 are simple

wrappers around the Graphite PHP Linked Data Library.17 The browsers can jointly

explore both RDF data in a dereferenced URI and SPARQL endpoints.

The SPARQL browser can be used explore a selected endpoint by defining a

particular resource URI or specifying a simple text search query.

Both browsers present the requested data by grouping the requested resource

triples together and therefore creating an outline of the resource, but no further custom

data views are provided, the data are displayed exactly in the form they are received.

Figure 13 Quick and Dirty RDF browser

15 Quick and Dirty RDF Browser. http://graphite.ecs.soton.ac.uk/browser/
16 Quick and Dirty SPARQL Browser. http://graphite.ecs.soton.ac.uk/sparqlbrowser/
17 Graphite PHP Linked Data Library. http://graphite.ecs.soton.ac.uk/

20

3.3.5 OpenLink Faceted Browser

The OpenLink Faceted Browser is an OpenLink Virtuoso Universal Server18 built-in

browser and search service. The browser is tied to the server instance, thus only

capable to operate within the server databases.

A resource is described in a form of table, one row per one property. The browser

does not handle resources with large amount of relations well, as it provides the option

to paginate the result data within the scope of the whole resource, not within particular

properties. Due to this limitation it is for example not capable to display all of the

resource types of relations on a single page, which is a great disadvantage for the

exploratory function of the product.

Figure 14 OpenLink Faceted Browser

18 OpenLink Virtuoso Universal Server. http://virtuoso.openlinksw.com/

21

3.3.6 Oobian Insight

Oobian Insight19 is a commercial Linked Data browser. As opposed to other browsers,

it provides both graphical and textual user interface elements, therefore it is possible

to explore the RDF graph visually through the collection of dots connected with lines

and at the same time the data can be displayed sequentially in a reader mode.

In addition, the application provides a map mode that displays any available

resources on a map, anywhere in the world.

As an exploratory tool, Oobian Insight stands out from all the other browsers,

for it provides further connections outside of the world of Linked Data like integrated

web search or news search and listing of similar resources.

Although the views of the data cannot be customized, the software product does

a great job out of the box, as the information is presented in a comprehensive way.

Figure 15 Oobian Insight Linked Data Browser

19 Oobian Insight. http://www.oobian.com/home/insight

22

3.3.7 LODLive

LODLive20 is a graph visualization oriented Linked Data browser. It enables users to

navigate the Linked Data graph by following oriented links (relations) between nodes

(data entities).

Although the browsed does not provide separate text view interface, it is possible

to display a list of all literal values associated by each resource by clicking an icon

placed on the edge of each node.

Figure 16 LODLive Linked Data browser

20 LODLive. http://lodlive.it/

23

3.3.8 Graphity Client

Graphity Client21 is a part of Graphity Linked Data Platform.22 The major goal of the

project is to provide solution to build user-friendly web applications by managing data

instead of writing code.

Graphity Client is not only a standalone Linked Data browser, but according to

its creators it is an extensible Linked Data framework. It can run as a standalone end-

user Web application or serve as either a frontend or backend component in data-

driven applications. The Client is generic software, it can operate on Linked Data and

RDF independently of the domain of the data. [14]

The Graphity browser is designed with customization in mind. The presentation

of data is rendered using XSLT23 templates, which can be overridden if required,

therefore it is possible to alter both layout and design of particular properties displayed

to a user. The application can be further enhanced by providing custom SPARQL

queries alongside the XSLT templates.

This platform is the only one of all the aforementioned browsers that provide

means to extend the application in a declarative, not an imperative approach. The

developer only has to write declarative SPARQL and/or XSLT code to implement a

specialized Client-based Web application.

21 Graphity Client. http://graphityhq.com/technology/graphity-client
22 Graphity Linked Data Platform. http://graphityhq.com/
23 Extensible Stylesheet Language Transformations.

24

Figure 17 Graphity Client LD browser

25

3.3.9 Justinian

Justinian24 is a Linked Data browser designed to search and explore Czech legal acts,

judicial decisions and related items. Although it is domain-specific, the framework it

is built upon is domain-independent and may therefore be used to display generic data.

The architecture of the project is modular and consists of a series of widgets the

authors call “miniapplications” used to display information about particular resources.

Each miniaplication provides a custom template and may define a custom SPARQL

query needed to fetch required data. In addition, miniapplications may set a display

priority determining their position on the rendered web page.

The methods of extending Justinian are similar to those of extending the

Graphity Linked Data Platform, although in case of Justinian some form of imperative

programming is generally needed to achieve desired results.

The author of this thesis is one of the creators of Justinian.

Figure 18 Justinian Linked Data browser

24 Justinian. http://www.justinian.cz

26

3.4 Summary

Based on the research and examination of existing Linked Data browsers, we can

assume that none of them satisfies all the desired features presented using the ideal

model solution. However, some projects come close to fulfilling majority of the

requirements, most notably the Graphity Client, although it may seem that its primary

objective is to create tailored domain specific applications, i.e. to provide a

presentation layer for the data.

All of the studied solutions have one thing in common – their target user group

are expert users, that is, users who possess extensive knowledge of Linked Data and

RDF. One of the challenges that remain unanswered is therefore development of a

browser comprehensible enough for common users while providing advanced

functionality for the expert ones, especially regarding possible customization of data

presentation.

The browser proposed in this thesis must embrace this challenge and special

means of user interaction and data display customization must be developed.

27

4 Analysis

The introductory chapter of this thesis presented the goal of developing a customizable

Linked Data browser. The suggested customization options should be implemented in

a way that users provide templates to alter the default display of specific Linked Data

entities identified by their RDF type.

The previous chapter examining existing Linked Data browsers shed light on

possible customization solutions, including analogous template based approaches. The

chapter also demonstrated that although some of the existing solutions provide

sophisticated methods of altering the data presentation, none of the projects enable

their users to do so without extensive knowledge of RDF principles, programming

languages and other technologies. While accomplishing the original goal of this thesis,

the findings regarding possible customization methods must be taken into account and

a technique satisfactory for both expert and non-expert users must be developed.

The model of an ideal Linked Data browser that has been presented and used as

a reference browser for the comparison of other existing solutions will be re-used again

for the purpose of the analysis, as it is suitable for the most of the features of the

reference browser to be included as requirements for the solution being developed as

an integral part of this thesis.

4.1 Customization requirements

Given the fact that the customization properties of the browser being developed are to

be the distinctive feature in comparison with other existing solutions, it is suitable to

discuss this topic separately from other functional and non-functional requirements.

The previous examination of existing solutions and the proposed model of an

ideal Linked Data browser clearly show that to create a truly universally customizable

generic browser, it is necessary to consider potential users, that is, both experts and

non-experts, and provide each target group with set of means to alter the style of

presentation of data. The desired goal is to develop a solution that enables

straightforward adaptation of data presentation by non-expert users, while avoiding

restricting modification options that could be possibly leveraged by expert users.

28

The objective can be facilitated by creating a two-level customization system.

The lower level would enable the expert user to specify how certain data types should

be presented to the end user by providing a custom template or styles. The higher level

would then enable the non-expert user to rearrange the data and specify the final

appearance and layout of the data displayed to the end user. The suggested flow of

transformations is depicted on Figure 19. It is necessary to emphasize that the

customization process is optional and default behavior must be defined for every step

of the process.

Figure 19 Flow of data presentation customization

4.1.1 Expert user customization

On the lower level, expert users are enabled to perform following tasks:

1. Specify of a custom template to display data.

2. Define conditions and priorities for each template, i.e. when to apply the

template and how to resolve conflicts, if any.

3. Specify a SPARQL query to fetch additional required data for the custom

template, if necessary.

29

4.1.2 Non-expert user customization

On the higher level, non-expert users are enabled to perform following tasks:

1. Specify a custom view to present data, that is, override the default display

of data by rearranging information on the page or hiding unwanted data.

2. Define conditions and priorities for each view, i.e. define when to apply

the view and how to resolve conflicts, if any.

3. Edit previously created views.

The specification of a view is to be performed using a What You See Is What

You Get interface by rearranging data on the page in a drag and drop manner.

4.2 Functional requirements

The fact that the application provides customization options implies that there has to

be some form of authentication of authorization present in the application, as it is

suitable that the changes in the configuration of the application are performed “on the

fly” directly through the application interface, without the need to stop and restart the

application.

4.2.1 Authentication and authorization

The application serves three kinds of users – a guest, a member and an administrator.

A guest is a user that is not authenticated, a member is an authenticated user and an

administrator is a member with administrative rights.

The application provides means to register an account and to log in to an existing

account, and optionally log out. The primary identifier of a user is his or hers e-mail

address that has to be unique within all user accounts, i.e. it is not allowed to register

a user account when another account with the same e-mail address already exists in

the system.

Customization of data views as well as global configuration of the application

are tasks that affect all end users of the application and are therefore strictly reserved

for administrators only.

Searching and browsing is not restricted, thus the end user does not have to be

authenticated in order to exploit the functionality.

30

4.2.2 Administration

The following functionality is reserved for users with administrative rights only.

 User management – assigning and revoking administrative rights to registered

users, deleting of users.

 Endpoint management – specification of available SPARQL endpoints.

 Language management – specification of available language parameters.

 View management – creating, editing and deleting customized data views.

4.2.3 Browsing data

When browsing data, the application displays information about a single resource at

once, the resource is identified by its URI. The following information is presented to

the user:

 The URI of the currently displayed resource.

 RDF types of the resource.

 All the properties that exist as predicates in relations of the resource, for the

resource being both the subject and object of those relations.25

 For each property a list of its values is presented.

The application must manage large amounts of data correctly and by default

display only a limited number of values per one property. Upon request, the application

loads more results and provides a convenient way to paginate through the results,

displaying only the selected subset of results.

Should there exist a user defined customized view applicable to the currently

displayed resource, the data must be presented according to the definition contained in

the view.

In addition, the application provides a raw mode, inhibiting all the configured

customizations, enabling the user to see the data exactly in the way they are stored in

the database. Furthermore, the raw mode displays all the graphs associated with the

current resource26 and enables the user to restrict the displayed result by selecting one

or more graphs, i.e. display only properties contained in those graphs.

25 I.e. (resource property otherResource), (otherResource property resource)
26 All the graphs containing one or more triples where the currently displayed resource figures as a

subject or an object.

31

To summarize – the data displayed in the standard browse mode can be altered

by creating a customized view, whereas in the raw more it is possible to modify the

result by restricting graphs the resource is contained in.

4.2.4 Searching data

A search function serves as a primary means of exploring data. An input field is

provided to the user to insert a search query, which is then executed upon request. The

application performs a fulltext search in any strings present in the database. Every

string found in such a way is by definition an object in some (subject predicate object)

relation, and in that case the subject is in fact a URI of a resource the user looks for

and should be therefore included in the results of the query. On the top of that, the

application provides following search options to refine the search results:

 Option to specify which RDF data types to search in.

 Option to specify which data properties to search in.

 Option to specify which graph or dataset to search in.

The options can be used separately or all at once depending on the user’s

preference. In addition, the user may specify multiple options of each type.

The search results are presented as a table, including links to found data entities.

Upon clicking the link, the browse mode is initiated and relevant information about

the target resource is displayed.

4.2.5 Data sources

The key component of the browser are the data sources it operates with. When defining

the model of an ideal Linked Data browser in the previous chapter, it was determined

that the browser should support retrieving data from SPARQL query services, as any

other forms of data sources can be conveniently mirrored to a database and supported

with a SPARQL endpoint.

It is therefore both necessary and satisfactory for the suggested browser to

provide access to data through SPARQL endpoints.

An array of SPARQL endpoints can be configured by users with administrative

rights, as well as the default endpoint which is used if no end user preference is set.

32

The application supports any generic SPARQL endpoint that is compliant with the

SPARQL 1.1 Protocol.27

A user can select one or more pre-configured SPARQL query services as the

data source. This settings applies for both searching and browsing and is persistent

throughout the user session. However, the settings must be dependent on the

application instance, i.e. it should be possible to have two instances of the application

open side by side, each one with different data source settings.

Introduction of multiple SPARQL endpoints brings new problems that will have

to be solved in the design phase. The desired behavior is such that the application

operates on all the selected endpoints at once, however this goal might be hard to

achieve, especially regarding possible performance problems. Therefore it will be

satisfactory if the application provided access to only one endpoint at once. However,

should such circumstances appear, it is necessary to ensure that the user can handle

selection and changes of endpoints with ease, without the loss of current application

context, i.e. when browsing a particular resource, the change of an endpoint should not

change the state of the application, the same context and same resource should be

displayed, except for the data, which will be provided by the newly selected endpoint.

4.3 Non-functional requirements

Akin to the model Linked Data browser presented in the previous chapter, the proposed

browser is a web application embracing responsive design principles. On top of that,

it implements a Single-page application (SPA) design approach. The goal is to provide

fluid user experience comparable to a desktop application. All the necessary resources

should be therefore loaded at once when the application is initially loaded in the

browser, that is, in the moment when the user first accesses the application. After that,

only necessary data should be transmitted to and from the server, as the following

communication should preferably consist only of API requests, eliminating the need

of ever reloading the page.

Another major requirement – and probably the most important one – is the

necessity of good performance. When browsing the selected data sources, the average

processing time of API data requests should be no longer than five seconds, even when

27 SPARQL 1.1 Protocol. http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

33

displaying resources that are parts of hundreds of thousands of relations. All SPARQL

queries should be optimized and only necessary information requested. However, the

performance of the queries is strictly dependent on the performance of the SPARQL

endpoint and cannot therefore be directly controlled. Still, the application must be

optimized especially regarding the customization features, that is, if there are custom

templates defined for a particular resource or a custom view, or a combination of both,

the resulting performance should not be negatively affected in an intolerable way.

Nonetheless, sometimes it is impossible to avoid complex SPARQL queries that

require a lot of computation, especially when looking for entities using fulltext search.

In some cases, it is possible for the request to take significantly long time, therefore

the execution time of the queries must be limited. If the maximum execution time is

reached, the query is aborted and the user must be notified. Hopefully, the user will be

able to issue a different, more restricting query that would still satisfy his concerns.

The web application should work in all contemporary major web browsers, most

importantly the ones using WebKit28 as a core rendering component of web pages.

This engine (or its variants) is used by Google Chrome, Opera or Safari browsers.

28 The WebKit Open Source Project. https://www.webkit.org/

34

5 Design and Implementation

Based on the requirements that arise from the Analysis, this chapter suggests a design

of a customizable Linked Data browser and describes key design and implementation

features and decisions.

Given the fact that the browser is a web based application, it is essential to

examine possibilities of deployment and employed technologies as the first order of

business, for those will likely determine or at least influence architecture of the system

as well as many further major and minor design decisions.

5.1 Deployment and employed technologies

When building web applications, there are two major deployment variants that are

broadly used across the Internet. The traditional and probably the most common one

is the LAMP stack, which stands for Linux OS, Apache Server, MySQL database and

PHP (or sometimes Perl or Python). In the recent years, a modern challenger of this

approach emerged the MEAN stack – MongoDB, Express, AngularJS, Node.js. The

MEAN stack represents a thoroughly modern approach to web development: one in

which a single language (JavaScript) runs on every tier of the application, from client

to server to persistence. [17]

There is no need to describe the individual parts of the LAMP stack further, as

they are commonly well known. However, it might be useful to briefly describe the

components of the MEAN stack.

MongoDB29 is a cross-platform document-oriented database. Classified as a

NoSQL database, MongoDB eschews the traditional table-based relational database

structure in favor of JSON-like documents with dynamic schemas.

Express30 is a minimal and flexible Node.js web application framework that

provides a robust set of features for web and mobile applications. The framework is

easily extensible through various middleware.

29 MongoDB. http://www.mongodb.org
30 Express. http://expressjs.com

35

AngularJS31 is a frontend web application framework maintained by Google

designed for creating dynamic single page applications. Using the framework, it is

possible to implement client side model–view–controller (MVC) architecture.

Finally, Node.js32 is an open source, cross-platform JavaScript runtime

environment for server-side and networking applications. The platform uses an event-

driven, non-blocking I/O model that makes it lightweight and efficient, perfect for

data-intensive real-time applications. [18]

Because of the fact that one of the requirements is for the browser to implement

Single-page application design, the MEAN stack is a logical choice, as it is a priori

designed to provide such a functionality, especially thanks to the AngularJS

component. In addition, these technologies can prove useful in many areas of the

project. Here is a list of major reasons in favor of utilization the MEAN stack:

 Parts of the stack are designed to work together.

 Single programming language – JavaScript – on both client and server.

 Platform independent solution thanks to Node.js.

Furthermore, the author has already significant experience with the stack as it

has been used to develop the aforementioned Justinian project and it has proven

effective and suitable to be used in the Linked Data environment.

For the purpose of the Linked Data browser, we are not going to employ the

MongoDB, as the expected size of the application database is likely to be small and

the data can be therefore held in-memory and eventually persisted in the file system.

The in-memory database is discussed further in following sections of the thesis.

5.2 Architecture and data flow overview

The architecture is largely determined by the analysis and by the employed MEAN

stack. Figure 20 depicts an overview of the system architecture, together with key

system components and data flow between those. Majority of requests is realized using

the REST approach. JSON was selected as a transmission format of data between

components, its JSON-LD variant is used when sending RDF data.

31 AngularJS. https://angularjs.org
32 Node.js. http://nodejs.org

36

Figure 20 Architecture and data flow overview

The server side provides two kinds of API providers. The first kind is aimed to

facilitate application configuration and communicates with a local in-memory

database only. These APIs are designed to provide CRUD interface for application

dynamic data, i.e. users, endpoints or customized views, so that these resources can be

stored on the server once created on the client side.

The second kind of APIs provide access to remote SPARQL endpoint, the aim

of those is to facilitate data retrieval by issuing a SPARQL query that is defined and

constructed server-side. Data is transmitted in JSON-LD format.

37

5.3 Resource description

An integral part of the developed Linked Data browser is resource description, which

is a process of obtaining information about the resource that describes the resource

thoroughly. Specifically, it is a SPARQL query designed in such a way that it requests

a portion of a graph that contains the resource and its surroundings. The problem is

that the content of the surroundings is unknown at the time of issuing the query.

This section discusses possible solutions of constructing such a subgraph. The

most important aspect of designing such a query is that the fetched subgraph should

contain enough information to be displayed to the end user, that is, the ideal solution

includes sufficient amount of information so that no additional queries regarding the

described resource are needed. At the same time, the query must be able to be

processed fast enough and return only the minimum amount of data truly needed. This

is the key idea of this section of the thesis and will be referred to repeatedly.

According to the analysis (section 4.2.3 Browsing data), the requested subgraph

should contain at least the following information:

 Resource URI

 RDF types of the resource

 All the properties that exist as predicates in relations of the resource, for

the resource being both the subject and object of those relations, and their

values.

SPARQL language contains a special kind of query designed especially for such

cases – the DESCRIBE query, introduced in the Preliminaries chapter. Even though it

is a great candidate to use for resource description, it is necessary to find an alternate

solution, as the DESCRIBE query has two drawbacks:

1. The result of the query is dependent on the SPARQL query service and

its configuration, that is, different SPARQL endpoints may provide

different results, even though when operating on the same database.

2. The query cannot be limited, i.e. if a resource has thousands of relations

of a particular RDF type, it always returns all of them, which can cause

performance issues.

38

3. The query does not return enough information to really describe the

resource, as it only examines the adjacent nodes, but not other levels of

the graph.

DESCRIBE <http://example.com/resource/12345>

Figure 21 SPARQL DESCRIBE query

What we need is to invent a query that provides similar results, but in addition it

enriches the resulting graph with some essential information about objects on the

second level – an example is demonstrated by Figure 22. To clarify, it is suitable to

fetch additional information for each resource that is adjacent to the described

resource, that is, every resource that is contained in a triple with the described resource

either as an object or a subject.

Figure 22 Example of a second level relation of a resource

In accordance with the key idea of the minimal sufficient subgraph presented

previously, the amount of information to be fetched about adjacent resources has to be

limited, namely, it seems satisfactory that only a RDF type and a title of the resource

are retrieved. As for the title, by default the application considers following RDF

properties as titles: foaf:name, dcterms:title and skos:prefLabel. This default

configuration can be overridden (more on that topic later).

In addition to the titles of adjacent nodes, it is desirable to fetch labels of the

particular properties involved.

Furthermore, the result of the query must be a valid RDF representation so that

it can be serialized to JSON-LD format, therefore it is necessary to use the

CONSTRUCT SPARQL query.

Figure 23 shows a possible SPARQL query that improves on the DESCRIBE

query and that satisfies presented conditions.

39

PREFIX my: <http://my/>

PREFIX resource: <http://example.com/resource/123>

CONSTRUCT {

 resource: a ?resourceType .

 resource: my:out my:outcontainer .

 my:outcontainer ?outPredicate ?outObject .

 resource: my:labels ?outPredicate .

 ?outPredicate my:label ?outPredicateLabel .

 ?outObject a ?outObjectType ;

 ?outSecondaryPredicate ?outSecondaryObject .

 resource: my:in my:incontainer .

 my:incontainer ?inPredicate ?inObject .

 resource: my:labels ?inPredicate .

 ?inPredicate my:label ?inPredicateLabel .

 ?inObject a ?inObjectType ;

 ?inSecondaryPredicate ?inSecondaryObject .

}

WHERE {

 OPTIONAL {

 resource: ?outPredicate ?outObject .

 MINUS { resource: a ?outObject } .

 OPTIONAL { resource: a ?resourceType }

 OPTIONAL { ?outObject a ?outObjectType } .

 OPTIONAL { ?outPredicate rdfs:label ?outPredicateLabel }

.

 VALUES ?outSecondaryPredicate { foaf:name dcterms:title

skos:prefLabel }

 OPTIONAL { ?outObject ?outSecondaryPredicate

?outSecondaryObject } .

 } .

 OPTIONAL {

 ?inObject ?inPredicate resource: .

 OPTIONAL { ?inObject a ?inObjectType } .

 OPTIONAL { ?inPredicate rdfs:label ?inPredicateLabel } .

 VALUES ?inSecondaryPredicate { foaf:name dcterms:title

skos:prefLabel }

 OPTIONAL { ?inObject ?inSecondaryPredicate

?inSecondaryObject } .

 }

40

}

Figure 23 Advanced resource describe query

Although the query presented in Figure 23 is quite complex, it surprisingly works

alright. Figure 24 displays a partial result of this query. The original subgraph is

modified in a way that the described resource contains only three properties – rdf:type,

my:labels, my:out and my:in. The three my: prefixed properties are in fact virtual

containers for labels and subject and object relations.

{

 "@id":" http://example.com/resource/123",

 "@type": [...],

 "http://my/labels": [...],

 "http://my/out": [...],

 "http://my/in": [...]

}

Figure 24 Partial result of advanced resource describe query

Even though the query suggested in Figure 23 describes well resources engaged

in a small number of relations, it is unfitting for describing larger data entities.

Following problems still have to be solved:

1. Query returns all available relations instead of a sample of relations for

each property.

2. Query is too complex and therefore slow to execute.

Since it is impossible to simplify the query without any loss of information, it is

necessary to employ a different strategy – divide the query to small subqueries and

execute them in parallel whenever possible. A schema of this strategy is depicted in

Figure 25.

41

Figure 25 Parallel resource description

The strategy is realized in two steps. Firstly, only basic information about the

object is fetched – its RDF type and properties (types of its relations), that is, for every

triple (resource predicate other) and (other predicate resource) a distinct list of

predicates is fetched. We are going to refer to these relations as subject relations and

object relations depending on whether the described resource figures in the relation as

a subject or an object. The first step can be executed by three SPARQL queries

performed all at once.33

33 The process could be actually realized using only two SPARQL requests by including the RDF types

as the subject property relations list. However, excluding the type to a separate query may speed further

processing. Since the queries are performed in parallel, it should not affect performance in a negative

way.

42

PREFIX my: <http://my/>

PREFIX resource: <http://example.com/resource/123>

CONSTRUCT {

 resource: my:subject ?property

}

WHERE {

 resource: ?property [] .

 FILTER(?property NOT IN (rdf:type))

}

Figure 26 A query to fetch subject relations of a resource

Once the three preliminary queries are resolved, the algorithm shifts to the

second phase. For each distinct predicate found in the first step, a separate query is

issued to gain information about the particular property. This tactics has the following

advantages:

1. Only a limited number of values of each property may be requested.

2. A total count of the values of each property can be calculated.

3. A possibility of a parallel execution and therefore improved

performance.

An example of a query that asks for information about a particular property of a

resource is presented in Figure 27.

43

PREFIX my: <http://my/>

PREFIX resource: <http://example.com/resource/123>

PREFIX property: <http://example.com/properties/someProperty>

CONSTRUCT {

 my:property my:id property: .

 my:property my:relation my:subject .

 my:property my:count ?count .

 my:property my:label ?label .

 my:property my:data ?object .

 ?object ?property ?value .

}

WHERE {

 {

 SELECT ?object

 WHERE { resource: property: ?object . }

 LIMIT 5

 }

 {

 SELECT (COUNT(DISTINCT ?dist) as ?count)

 WHERE { resource: property: ?dist . }

 }

 OPTIONAL {

 VALUES ?property { rdf:type foaf:name dcterms:title

 skos:prefLabel } .

 ?object ?property ?value .

 }

 OPTIONAL {

 property: rdfs:label ?label .

 }

}

Figure 27 A query to request a subject property relation information

It is necessary to emphasize that employment of this strategy can lead to a

significant number of SPARQL queries when describing a single resource. The total

number of requests is:

Total = 3 + #subjectProperties + #objectProperties

That is, three preliminary queries and one query for each type of subject or object

relations.

44

After all the data are fetched, they need to be merged programatically into one

aggregate graph. This merging should not cause any difficulties performance-wise, as

the time needed for code execution and in-memory manipulation is generally

negligable compared to the SPARQL queries.

On the other hand, it is a well-known fact that performing a large number of

HTTP queries may cause performance issues, it is therefore an absolute necessity to

test the proposed solution on both small and big data entities, denominated by the

number of relations they are part of.

Preliminary empiric testing has shown that this strategy performs exceptionally

well when fetching big entities, and on top of that it is comparable to the naïve

approach presented earlier in this chapter that requested all the data at once. However,

the performance of the design must be further thoroughly examined in the evaluation

phase of the project.

To summarize, the resulting graph includes following properties of a described

resource:

1. Resource URI.

2. Resource RDF type

3. List of resource’s properties, consisting of both subject and object

relations.

In addition, every property item consists of following information:

1. Property URI.

2. Property RDF label, if present.

3. Type of the relation - subject or object.

4. A collection of five sample values.

5. Total count of values.

Should a value be in fact a resource, additional information is provided:

1. Value resource URI.

2. Value resource RDF type.

45

3. Value resource title, if present, by default consisting of aforementioned

properties foaf:name, dcterms:title and skos:prefLabel.

The resulting graph describing a particular resource will be from now onwards

referred to as a resource graph.

5.4 Data presentation and customization

This section describes a process and methods involved in delivering Linked Data to

the end user, that is, transforming a resource graph presented in previous section in

such a way that is can be displayed to the user.

The analysis defined that the application must provide means to customize the

data presentation on two levels – firstly, a custom templates may be provided to alter

the default style of particular data entities identified by their RDF type, secondly, a

user must be enabled to modify the final layout of the data, i.e. to rearrange the data to

his or hers liking.

In accordance with the analysis, the following paragraphs present a solution that

satisfies the requirements and further extends customization capabilities of the data

browser.

5.4.1 Miniapplications

Let us consider the customization of data presentation on the higher level, that is,

modifying a layout of the web page. Should such a rearrangement be possible, the data

must be divided into autonomous blocks that could then be somehow organized. To

comply with the analysis, each property of the resource graph should be embodied in

such a separate block, so that the user can decide which properties to include in the

view (and in what order) and which to hide. Since the blocks ought to be independent

and in some cases might need to perform non trivial tasks like operate with the data

model etc., they cannot be considered as just ordinary templates, but instead should be

considered as miniapplications – templates enriched with a controller and other non-

static capabilities.

Furthermore, it is not necessary to restrict such miniapplications to displaying

just one property. Besides utilizing multiple properties, a miniapplication might not

work with any of the resource’s properties at all, and, for example, display some

general or even unrelated information. The key idea is to permit as much customization

46

as possible. From this point of view, the resulting data presentation will be actually a

collection of miniapplications that the user would be able to rearrange to his taste.

In addition, it is not necessary to restrict the number of the same miniapplications

on the page, as both of them should be enabled to serve for example as display

providers for different resource’s properties. Each displayed miniapplication should

be therefore identified by its name as well as its instance. An obvious use case is the

existence of a default miniapplication capable of presenting any data, every instance

displaying distinct property of the resource.

To satisfy the requirements set by the analysis, each miniapplication must

provide a server-side configuration script with following functions or properties

included:

1. function matchInstances(resourceGraph) : Array.

2. function inhibitInstances(resourceGraph) : Array.

3. function setupApplication(app, authorization) : Void.

4. displayTemplate : File.

5. displayPriority : Integer.

6. setupPriority : Integer.

The reason for the miniapplication configuration being resolved on the server

side is especially the third function – setupApplication, that permits the

miniapplication to define custom API providers.

Function matchInstances returns an array of miniapplication’s instances that can

be deployed using the particular resource graph passed as an argument. An instance is

an object that serves a special purpose – in addition to identifying the miniapplication,

it is used to bootstrap the miniapplication on the client side. Therefore,

miniapplications must include sufficient information in the configuration script so that

they can be properly invoked on the client side. There is no explicit restriction on the

contents of the instance object, but the following rule is proposed: should the

miniapplication cover a single property, the instance object ought to include the

property’s URI and relation (object or subject).

47

A custom miniapplication that displays information about a particular property

might want to prevent other miniapplications covering the same property from being

shown to the user. In such case the miniapplication should define inihibitInstances

function that returns names and instances of other miniapplications that are to be

inhibited. This feature is designed so that it provides the required functionality of a

custom template definition for particular types of data.

The displayTemplate property specifies the miniapplication’s default template

file to be loaded on the client side when the miniapplication is initialized.

The displayPriority property defines a default sort order priority if no

customized view is defined by user. The higher the number, the higher the

miniapplication is displayed on the web page.

The setupPriority property defines a setup order priority which is related to the

inhibition function. A miniapplication can inhibit other miniapplications and their

instances only if it has a higher setup priority defined. The setup priority is introduced

in order to prevent circular inhibition – the case when two miniapplications try to

inhibit each other.

One of the requirements of the analysis is to provide two distinct modes for

browsing the data – a standard mode and the raw mode that would display the data in

the way they are stored in the database. To accomplish this functionality, a special

class of raw miniapplications must be set apart. These miniapplications should provide

a raw Boolean indicator in their configuration file so that they can be distinguished

from the standard miniapplications. In addition, even the raw browse mode should

enable the user to define special raw miniapplications and possibly override the default

ones.

5.4.2 Layouts

In order to enable the user to rearrange miniapplications on the web page, it is

necessary to specify boundaries or containers that would permit such an arrangement.

This functionality can be realized by introducing layouts that are in fact special types

of miniapplications. The core of the layout is a HTML template with annotated panels

– identified by their panel name – that are to be populated with miniapplications. The

population and user interaction has to be handled by the application, not by the layout

itself, so that the layout template can be as simple as possible.

48

As opposed to standard miniapplications, each layout is identified only by its

name. In addition, it must provide a server-side configuration script with following

information:

1. panels : Array of Strings.

2. defaultPanel : String.

3. displayTemplate : String.

The panels array contains a list of all the panel names contained in the layout

template.

The defaultPanel denotes a panel that is populated by default, that is, if no

customized view exists.

The displayTemplate property specifies the layout’s default template file to be

loaded on the client side when the layout is initialized.

As well as default miniapplications to present the data, the browser provides a

default single-column layout.

5.4.3 Views

Layouts and miniapplications are organized into views. There are three types of views

defined, each serving a different purpose – a default view, a raw view and a custom

view.

A default view of a resource graph is a configuration of a default layout and a

collection of resolved miniapplications that can be displayed for the resource graph,

that is, miniapplications that provide a list of instances minus miniapplications that are

inhibited. The display order of the miniapplications corresponds to the displayPriority

parameter.

A raw view is constructed in the same manner as a default view, except for the

fact that only miniapplications with raw parameter are included.

A custom view is a view defined by a user that can be applied to one or more

resources. Each custom view consists of the following properties:

1. A reference resource

49

2. A selected layout.

3. An ordered list of miniapplications for each panel that is defined by the

selected layout.

4. Matching rules – a set of rules that must be all satisfied in order to apply

the layout

5. Priority – in case that two views possibly match for one particular

resource.

6. Strict mode – defines how to manage miniapplications that are not part

of the view definition.

A custom view is created using a reference resource – which is a particular

resource graph. The structure of the resource graph determines the set of available

matching rules. To clarify, let us consider the following example: a user is browsing

the data and stumbles upon a resource he would like to customize. The application

enables him to create a custom view for the resource – to select a particular layout and

reorder the displayed miniapplications. The user can then define a class of resources

the created view can be applied to using matching rules, for example all resources with

the same RDF type as the resource used to create the view – hence the reference

resource.

The matching rules are in fact a subgraph of the resource graph. The custom

view can be applied to any other resource graph that includes the subgraph. These

matching rules are generally available:

1. Matching based on the reference resource URI (if this rule is selected,

only the reference resource will ever satisfy the subgraph inclusion)

2. Matching based on the resource RDF type

3. Matching based on resource properties – whether or not such properties

exists

4. Matching based on resource properties’ types – whether a property exists

that contains an object of a particular RDF type

50

The property matching rules are available for both subject and object property

relations. It is necessary to emphasize that all the selected rules must be satisfied at the

same time in order to apply the custom view on the desired resource.

If there is a conflict of views, i.e. if two custom view definitions are both satisfied

for a particular resource, the view with higher priority is selected.

Finally, Strict mode property of the custom view specifies the strategy to employ

when dealing with miniapplications not covered by the custom view definition. It is

possible and probable that the structure of some resources from the class of target

resources specified by matching rules will differ from the structure of the reference

resource, and it is therefore possible that there may be matching miniapplications that

can be displayed in a default view of the particular resource, but are not included in the

custom view definition, because they do not provide any matching instances for the

reference resource. If the strict mode is selected, those additional applications are

omitted, otherwise they are included in the default panel of the layout.

5.5 Authentication and authorization

Authentication and authorization is implemented using JSON web tokens.34

The process of the token negotiation is depicted on Figure 28. When the user

logs in, the authentication is performed on the server. If the authentication succeeds,

the server sends a signed token to the client and the client saves the token. With

following requests, the client includes the token as a part of the HTTP request and the

token is verified on the server.

It is possible to include the user’s identity in the token, thus making it a tool

suitable for user authorization, as one can provide information about user’s roles or

rights directly into the token as a part of the user’s identity.

This authentication and authorization approach is suitable for single page

applications, because the server does not have to maintain a user session, as all the

information necessary for the authentication and verification is encoded in the token.

34 “JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred

between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of

a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure,

enabling the claims to be digitally signed or integrity protected with a Message Authentication Code

(MAC) and/or encrypted.” [19]

51

Figure 28 JSON web token negotiation

5.6 Key server-side components

The server-side part of the application is built using the previously introduced Express

web framework. The framework works as a standalone server managing HTTP request

and responses as well as routing.

The server-side is organized in a Model-View-Controller manner. A set of

possible URL routes is defined, each of them corresponding to a different controller

or a method of a controller. Controller can utilize models, key system components and

provide the content for HTTP responses. Regarding the View part in the MVC

approach – according to the fact that the application follows a Single-page application

design and thus the majority of its URL routes are REST API resources, the controllers

generally provide a JSON or JSON-LD output. The only exception is index controller

which provides the initial HTML code needed to bootstrap the application on the client

side.

The server-side includes following key components.

52

5.6.1 Index router and controller

Index router and controller component is responsible for providing initial HTML code

to bootstrap the application on the client side. The resulting HTML includes links to

all JavaScript and CSS files present in the application, including files contained in

custom layouts and miniapplications. Those files are provided by the Assets manager

component.

5.6.2 AssetsManager

AssetsManager’s primary objective is to maintain a list of application’s assets that

need to be loaded in the client bootstrap phase. Upon initiation of the server-side of

the application, the manager scans all relevant directories for JavaScript and CSS

assets. The list of assets can be then accessed from other components, for example by

the index controller.

5.6.3 SparqlQueryBroker

SparqlQueryBroker manages communication with SPARQL endpoints, facilitates

sending query requests and manages endpoint responses.

The component is designed to work closely with two other key components –

SparqlQueryRenderer and SparqlQueryAdapter.

The workflow of the broker is as follows: firstly, the SparqlQueryRenderer

component is invoked to provide a generated SPARQL query. Secondly, the SPARQL

endpoint is contacted and the component waits for response. Finally, upon receiving

the response, the broker invokes the SparqlQueryAdapter tool chain to further modify

the response and serves the result to the client-side.

5.6.4 SparqlQueryRenderer

SparqlQueryRenderer is a component that facilitates parametrized SPARQL queries.

The components receives a SPARQL query template and a list of parameters; then, it

processes the template and looks for parameter annotations. Finally, it replaces the

annotations found in the template with the actual values of the input parameters. An

example of a SPARQL query template is presented in Figure 29. The example query

contains a placeholder for a resource parameter.

53

CONSTRUCT {

 {{ resource }} a ?type .

}

WHERE {

 {{ resource }} a ?type .

}

Figure 29 SPARQL query template example

5.6.5 SparqlQueryAdapter

SparqlQueryAdapter is a tool chain designed to modify SPARQL endpoint responses

before re-sending them to the client. The component is in fact a set of consecutive task,

where each task can alter the response in a different manner. Following tools are

included:

 JSON-LD context application – the response can be simplified and

compacted by providing a JSON-LD data context.35

 Complex object reconstruction – the RDF data contained in the JSON-

LD response are a graph, and as such may and generally are scattered

across an array of separate objects, each object corresponding to a

particular Linked Data resource; thus, to facilitate the use of the data on

the client side, this tool merges all the response objects into one resulting

object, creating a tree-like structure. The merging is based on the

resolution of the resources URIs.

 Properties prefixes replacement – this tool explores the result graph and

considers URIs of any properties it finds – if a prefix is defined for each

such URI, the URI is replaced with the corresponding contracted

variants. Prefixes are provided by the PrefixManager component.

 Model definition – in addition to previous modification, a model of the

response may be defined. A model is a description or a schema of the

response. This tool ensures that the resulting response corresponds to the

defined model.

35 The following document provide additional details: http://www.w3.org/TR/json-ld/#the-context;

furthermore, examples of application of context to real RDF data can be found at: http://json-ld.org/.

54

5.6.6 PrefixesManager

PrefixesManager is a component that facilitates usage of namespace prefixes of URIs

across the application.

Upon creation of a SPARQL endpoint definition, the component contacts the

endpoint and requests a list of predefined namespace prefixes. The requested prefixes

definition is then stored in-memory and can be even propagated to the client side.

To summarize, the component provides implicit application-wide automatic

services regarding prefixes definition and management. Therefore, there is no need for

the namespace prefixes to be explicitly defined in the application configuration.

5.6.7 ResourceGraphBuilder

ResourceGraphBuilder implements thoroughly the process of creating a resource

graph described previously in this chapter (section 5.3 Resource description).

The component takes a resource URI as an input parameter and assembles the

resource graph according to the design of the process.

5.6.8 ViewBuilder

ViewBuilder implements the process of generating default, raw and custom views

described previously (section 5.4.3 Views).

The component takes a resource graph as an input parameter and constructs a

desired view corresponding to the resource graph according to the design of the

process already described.

5.7 Key client-side components

The client-side part of the application is built using the previously introduced

AngularJS Single-page application web framework. Part of the framework works as a

frontend routed.

Similarly to the server-side, the client-side is also organized in a Model-View-

Controller manner. A set of possible URL routes is defined, each of them

corresponding to a particular application state, which then determines the target

HTML template and controller. The models are provided by services that request the

desired data from corresponding REST API providers located on the server-side.

55

The client-side includes three kinds of components – services, directives and

filters. Each of the following components can be utilized by custom miniapplications

or layouts.

5.7.1 Services

A service is a singleton instance of an object that can be requested in a controller. The

application includes the following key services.

 Config – provides a model of application configuration, including existing

endpoints, languages, layouts and miniapplications.

 Describe – provides access to server-side API for describing resources, that is,

given a particular URI, the service returns the resource’s graph along with the

requested view containing the information of the data presentation layout.

 Identity – provides the current user’s identity, most importantly his e-mail

address and role if the user is authenticated.

 Miniapp – provides functions to facilitate miniapplication bootstrapping and

management of custom server-side API requests.

 PrefixesReplacer – provides functions to contract or expand predefined

namespace prefixes in URIs.

5.7.2 Custom directives

A directive is a method of extending AngularJS HTML templates to provide additional

functionality. To facilitate custom miniapplication and layout development, following

directives are implemented:

 loading-bar – displays a block with a loading indicator.

 datapager – a component to facilitate pagination of large arrays of data. The

displayed data can be fetched asynchronously upon request.

 describe – a directive to facilitate generation of hyperlinks for Linked Data

browsing – an input resource URI is converted to a functioning link.

 describe-list – the same as describe, except it expects the input to be a list of

resource URIs, which are then transformed to a horizontal list of hyperlinks. A

filter can be defined to be applied to each item in the input array (see 5.7.3

Custom filters for details).

 list – converts an input array of values to a vertical list.

56

 list-inline – the same as list, except the resulting list is horizontal.

 print-values – the same as list, except a value filter is applied to each item (see

5.7.3 Custom filters for details).

 layout-panel – a directive to be used strictly by layouts display templates to

annotate its defined panels, that is, containers to be populated with

miniapplications.

 layout-panel-setup – the same as layout-panel, except designed for usage in

layouts setup templates; for example, the developer may choose to provide a

simplified version of layout to be used when creating a custom view.

5.7.3 Custom filters

A filter is a function that extends AngularJS data output formatting. Generally, a filter

takes an input value and transforms it according to its definition. In addition, filters

can be chain in sequences. To facilitate custom miniapplication and layout

development, following filters are implemented:

 truncate-uri – takes an input URI and shortens it, keeping the domain and the

ending of the URI intact.

 truncate-uri-large – similar to truncate-uri, but produces longer strings.

 id – takes a JSON-LD object as an input and extracts its URI from the @id36

field; should an array of objects be provided as the input, an array of URIs will

be returned.

 value – similar to id, but extracts information from the @value37 field;

furthermore, if the input object contains more than one value, the filter returns

either the value corresponding to a preferred defined language or the first one

in the array.

 label – takes a JSON-LD object and extracts a possible label of the object to

be displayed to the user. The following RDF properties are considered labels:

rdfs:label, foaf:name, dcterms:title, skos:prefLabel. In none of these properties

are present in the object, the resource URI is returned instead.

 contract – shortens an input URI by replacing its predefined namespace prefix.

 expand – the opposite of contract, produces full URIs.

36 See JSON-LD reference for details. http://www.w3.org/TR/json-ld/
37 Ibid.

57

5.8 Supported SPARQL endpoints

The analysis determined that any SPARQL query service should be supported by the

application. Further research showed that this desired goal is currently not possible to

achieve without the sacrifice of significant functionality of the application.

Namely, there are two features that are – for the time being – not standardized

by SPARQL 1.1 definition and therefore not broadly supported.

1. SPARQL query including fulltext search.

2. Predefined namespace prefixes definition resolution.

Currently, the only known solution the author identified that provides those

features is OpenLink Virtuoso Universal Server.38 This solution satisfies the

requirements in the following ways:

1. The server implements a built-in bif:contains SPARQL function for

effective fulltext search.

2. Predefined namespace prefixes can be obtained directly from the

SPARQL endpoint by a GET request including a ?nsdecl HTTP query

parameter.39 Unfortunately, the endpoint service provides the list of

prefixes in a form of HTML table, thus non-trivial data processing is

needed to extract the required information.

The design of the application is therefore restricted by the findings and for the

time being the application only supports the aforementioned OpenLink Virtuoso

solution. Extending the support for other SPARQL query services will therefore have

to be an objective for future work.

5.9 Project directory structure

In this section, the file and directory structure of the application is presented.

5.9.1 Structure overview

 %ROOT_PATH% - the root of the project

o /config – application configuration

38 OpenLink Virtuoso Universal Server. http://virtuoso.openlinksw.com/
39 List of Opendata.cz predefined namespaces: http://linked.opendata.cz/sparql?nsdecl

58

o /datastore – persistent storage of in-memory database

o /layouts – directory of defined layouts

o /miniapps – directory of defined miniapplications

o /public – the root of the client-side part of the application

o /server – the root of the server-side part of the application

o /bootstrap.js – the initialization script to run the application

5.9.2 Suggested miniapplication structure

 %MINIAPP_ID% – the containing directory serves as a unique identifier

o /public

 /assets – optional assets to be included on the client-side

 /controllers – miniapplication controllers directory

 /views – client templates

 /display.html – default display template location

 /setup.html – default setup template location

o /queries – defined SPARQL queries and query adapters

o /miniapp.js – the miniapplication configuration file

5.9.3 Suggested layout structure

 %LAYOUT_ID% – the containing directory serves as a unique identifier

o /public

 /assets – optional assets to be included on the client-side

 /controllers – optional layout controllers directory

 /views – client templates

 /display.html – default display template location

 /setup.html – default setup template location

o /layout.js – the layout configuration file

59

6 Evaluation

In this chapter we are going to evaluate the developer customizable Linked Data

browser to find out if the project solution satisfies all the requirements. Two of the

crucial properties of the browser will be evaluated – the ability to customize data

presentation and performance.

6.1 Demonstration of browser customization

6.1.1 Custom address field

The first customization demonstrates how to build a custom display for the address

field, namely for entities of type http://schema.org/PostalAddress. Values of

this type are by default displayed as a list of URIs, we are going to alter this default

behavior to display a string containing the street address, postal code and address

locality.

STEP 1: Firstly, let us create miniapplication root folder that will contain all the

associated files:

%PROJECT_ROOT%/miniapps/s-postal-address

STEP 2: Let us create a miniapplication configuration file:

%PROJECT_ROOT%/miniapps/s-postal-address/miniapp.js

var _ = require('lodash');

var matchInstancesFunction = function (resourceGraph) {

 var instances = [];

 _.forEach(resourceGraph.property, function (property) {

 if (_.includes(property.sampleTypes,

"http://schema.org/PostalAddress")) {

 instances.push({

 property: property['@id'],

 relation: property['relation']

 });

 }

 });

 return instances;

};

60

module.exports = {

 description: 'Postal address display',

 matchInstances: matchInstancesFunction,

 inhibitInstances: function (resourceGraph) {

 return [{

 miniapp: '*',

 instances: matchInstancesFunction(resourceGraph)

 }];

 },

 displayPriority: 100,

 setupPriority: 0

};

Figure 30 Custom address miniapplication configuration

The configuration file is designed in such a way that it provides a miniapplication

instance for every property of the resource graph which is of RDF type

http://schema.org/PostalAddress. At the same time, it inhibits all similar

instances of all other miniapplications with setup priority defined lower than zero.

STEP 3: Now let us create a miniapplication controller.

%MINIAPP_ROOT%/public/controllers/s-postal-address-

controller.js

angular.module('app.miniapps')

.controller('SPostalAddressController',

 ['$scope', 'Miniapp', 'lodash', 'Describe',

 function($scope, Miniapp, _, Describe) {

 Miniapp.decorateScope($scope);

 $scope.addressesLoaded = false;

 var properties = [

 "http://schema.org/streetAddress",

 "http://schema.org/addressLocality",

 "http://schema.org/postalCode"];

 Describe.describeProperty($scope.$resource, $scope.$instance, 5, 0,

 properties)

 .then(function(data) {

 var miss = false;

 var sample = data.data[0];

 _.forEach(properties, function(property) {

 if (!_.has(sample, property)) {

 miss = true;

 return false; // exit loop

 }

 });

 if (!miss) {

61

 $scope.$property = data;

 $scope.addressesLoaded = true;

 }

 });

 $scope.showMore = function() {

 $scope.more = true;

 };

 $scope.results = [];

 $scope.datasource = {

 get: function(offset, limit) {

 return Describe.describeProperty($scope.$resource,

$scope.$instance, limit, offset, properties)

 .then(function(data) {

 return data.data;

 });

 }

 };

 }

]);

Figure 31 Custom address miniapplication controller

When initialized, the miniapplication issues a request to load custom data

determined by the list of selected properties by calling Describe.describeProperty

function. When the data is received, the result is inserted into the $scope.$property

variable. Furthermore, a datasource is defined ($scope.datasource) to provide

pagination function. Other defined variables are helpers for the template we are going

to create in the next step.

STEP 4: The display template. Let us create a file:

%MINIAPP_ROOT%/public/views/display.html

<div ng-controller="SPostalAddressController" class="miniapp-underlined">

 <div class="col-sm-3">

 is

 <a describe resource="{{ $property['@id'] }}">

 {{ $property | label | contract | truncateUri }}

 of

 </div>

 <div class="col-sm-9">

 <div ng-if="!addressesLoaded">

 <div ng-repeat="item in $property.data track by item['@id']">

 {{ item | label | contract | truncateUriLarge }}

 </div>

 </div>

 <div ng-if="!more && addressesLoaded">

 <div ng-repeat="item in $property.data track by item['@id']">

 {{ item['http://schema.org/streetAddress'] | value }},

62

 {{ item['http://schema.org/postalCode'] | value }}

 {{ item['http://schema.org/addressLocality'] | value }}

 </div>

 <div ng-if="$property.count > $property.data.length">

 <hr class="spacer-10"/>

 <button class="btn btn-default btn-sm" ng-click="showMore()">

 Show more objects ({{ $property.count }} total)

 </button>

 </div>

 </div>

 <div ng-if="more">

 <div ng-if="!datasource.isLoading"

 ng-repeat="item in results track by item['@id']">

 <div ng-class-even="'row-even'" ng-class-odd="'row-odd'">

 {{ (datasource.page - 1) * 10 + $index + 1 }}.

 {{ item['http://schema.org/streetAddress'] | value }},

 {{ item['http://schema.org/postalCode'] | value }}

 {{ item['http://schema.org/addressLocality'] | value }}

 </div>

 </div>

 <div class="well well-lg text-center"

 ng-if="datasource.isEmpty">

 Server responded with an empty result.

 </div>

 <loading-bar ng-show="datasource.isLoading"></loading-bar>

 <div datapager source="datasource" target="results"

 items-per-page="10" total-count="{{ $property.count }}">

 </div>

 </div>

 </div>

</div>

Figure 32 Custom address miniapplication display template

Although both the controller and the display template might seem too complex,

the solution provides the best user experience possible. When the web page and the

resource currently displayed are loaded, default information is presented, that is, a list

of URIs of the addresses. When the first Describe request in the miniapplication

controller is performed and the data is received, the list of URIs is replaced with a list

of formatted addresses, that is, a list of strings containing a street address, postal code

and address locality. Furthermore, if there are more than five entries present, a “Show

more objects” is displayed to the user. Upon clicking the button, the original address

list is replaced with a numbered list, and in addition a pagination is included, so that

the user can seamlessly browse the list even if it contains thousands of addresses.

STEP 5: Verification of the result.

63

Figure 33 Custom address field - default view

Figure 34 Custom address field - expanded view

64

6.1.2 Custom company field

The second customization demonstrates how to build a custom display for a company

field in such a way that the application displays the company’s name and identification

number. In comparison with the first example, this demonstration will have to employ

a custom SPARQL query.

The miniapplication will be applied to properties of type

http://purl.org/goodrelations/v1#BusinessEntity or

http://schema.org/Organization.

The identification number of a company is in fact a resource of type

adms:Identifier that has a property skos:prefLabel that contains the desired

identification number value.

In addition, the company might not contain the property with its identification

number, but instead may contain the owl:sameAs property that leads to another

resource that may or may not include the desired identification number. The SPARQL

query will therefore need to examine the chain of owl:sameAs links and find the value,

if it exists somewhere in the chain.

STEP 1: Firstly, let us create a miniapplication root folder that will contain all the

associated files:

%PROJECT_ROOT%/miniapps/organization-property

STEP 2: Now we are going to prepare the custom SPARQL query. Let us create the

SPARQL file:

%MINIAPP_ROOT%/queries/get-info.sparql

65

PREFIX my: <http://my/>

CONSTRUCT {

 {{ resource }} my:title ?title .

 {{ resource }} my:identifier ?id .

}

WHERE {

 {{ resource }} dcterms:title ?title .

 {{ resource }} owl:sameAs* ?sameObj .

 ?sameObj adms:identifier ?idObject .

 ?idObject skos:prefLabel ?id

}

Figure 35 Custom company miniapplication SPARQL query

The {{ resource }} expression will be later replaced by the actual resource URI.

STEP 3: Next, we are going to create a query adapter:

%MINIAPP_ROOT%/queries/get-info-adapter.js

module.exports = function(query) {

 query.getContext = function() {

 return {

 "title" : "http://my/title",

 "identifier" : "http://my/identifier"

 }

 };

};

Figure 36 Custom company miniapplication SPARQL query adapter

What this adapter does is pretty simple. The SPARQL query returns a JSON object

that has two properties – http://my/title and http://my/identifier. If we

specify a context in the way presented, those properties will be translated to title and

identifier respectively, thus when accessing those properties in a template, we do

not have to enter the full URI with the http://my/ prefix.

66

STEP 3: Let us create a miniapplication configuration file:

%MINIAPP_ROOT%/miniapp.js

var _ = require('lodash');

var Broker = require('../../server/lib/sparql-query-broker');

function partnerMatchInstances(resourceGraph) {

 var instances = [];

 _.forEach(resourceGraph.property, function (property) {

 if (property.relation != 'subject'

 || property.data.length != 1) {

 return; // continue

 }

 if (_.includes(property.sampleTypes,

 'http://purl.org/goodrelations/v1#BusinessEntity')

 || _.includes(property.sampleTypes,

 'http://schema.org/Organization')) {

 instances.push({

 property: property['@id'],

 relation: property['relation']

 });

 return false; // exit loop

 }

 });

 return instances;

}

module.exports = {

 description: 'Organization or BusinessEntity display',

 matchInstances: partnerMatchInstances,

 inhibitInstances: function(resourceGraph) {

 return [{

 miniapp: '*',

 instances: partnerMatchInstances(resourceGraph)

 }];

 },

 setupApplication: function(app, auth) {

 var query = require('./queries/get-info.sparql');

 var adapter = require('./queries/get-info-adapter');

 var brokerInstance = new Broker(query, adapter);

 app.route('/api/organization-property')

 .get(brokerInstance.serve);

 },

 displayPriority: 100,

 setupPriority: 0

};

Figure 37 Custom company miniapplication configuration

67

The matchInstances and inhibitInstances functions are similar to the custom

address miniapplication demonstrated earlier. In addition, the configuration file

defined a setupApplication function that registers a REST API provider for the

/api/organization-property URL. When sending a GET request to such URL

along with a resource parameter, the parameter replaces the {{ resource }} element

present in the SPARQL query and processes the query. The Broker component sends

a request including the prepared SPARQL query to a SPARQL endpoint and waits for

the result. When the response arrives, the Broker delegates it to the query adapter

which modifies the response (in this case it renames two of the properties of the JSON-

LD object). The modified response is then sent back to the client and the original REST

request is thus complete.

STEP 4: Now let us create a miniapplication controller.

 %MINIAPP_ROOT%/public/controllers/organization-property-

controller.js

angular.module('app.miniapps')

 .controller('OrganizationPropertyController',

 ['$scope','Miniapp', 'lodash', 'Describe',

 function($scope, Miniapp, _, Describe) {

 Miniapp.decorateScope($scope);

 $scope.organizationLoaded = false;

 Miniapp.request('/api/organization-property',

 { resource: $scope.$property.data[0]['@id'] })

 .then(function(data) {

 $scope.$property.data = data['@graph'];

 $scope.organizationLoaded = true;

 }

 });

 }

]);

Figure 38 Custom company miniapplication controller

What this controller does is clear – when it is initialized, it invokes an API request to

the custom REST provider, providing the resource parameter. When the data is loaded,

it is placed to the $scope.$property.data variable.

68

STEP 5: The display template. Let us create a file:

%MINIAPP_ROOT%/public/views/display.html

<div ng-controller="OrganizationPropertyController"

 class="miniapp-underlined">

 <div class="col-sm-3">

 <a describe resource="{{ $property['@id'] }}">

 {{ $property | label | contract | truncateUri }}

 </div>

 <div class="col-sm-9">

 {{ firstObject | label | contract | truncateUriLarge }}

 {{ organization['title'] | value }}

 ID: {{ organization['identifier'] | value }}

 </div>

</div>

Figure 39 Custom company miniapplication display template

The template in tandem with the controller provide great user experience similar to the

custom address miniapplication. When the web page is loaded, the default information

is displayed, either URI or a label of the organization, if defined. Whenever is the

custom API request issued in the controller completed, the data is replaced with the

custom view that displays the name of the organization as well as its identification

number.

69

STEP 6: Verification of the result.

Figure 40 Custom company miniapplication default view

6.1.3 Two-column layout

This section demonstrates the possibility to create a custom two-column layout.

STEP 1: Firstly, let us create a layout root folder that will contain all the associated

files: %PROJECT_ROOT%/layouts/two-column

STEP 2: Next, let us create a layout configuration file:

%PROJECT_ROOT%/layouts/two-column/layout.js

We are going to configure two panels, main and side.

module.exports = {

 name: 'Two Columns',

 defaultPanel: 'main',

 panels: ['main', 'side']

};

Figure 41 Two-column layout configuration file

70

STEP 3: Now it is time to create display and setup templates. The templates should be

located the following files:

%LAYOUT_ROOT%/public/views/display.html

%LAYOUT_ROOT%/public/views/setup.html

<div layout class="row layout-two-columns">

 <div layout-panel="main" class="col-md-8 main-panel"></div>

 <div layout-panel="side" class="col-md-4 side-panel"></div>

</div>

Figure 42 Two-column layout display template

<div layout class="row layout-two-columns">

<div layout-panel-setup="main" class="col-md-8 main-panel"></div>

<div layout-panel-setup="side" class="col-md-4 side-panel"></div>

</div>

Figure 43 Two-column layout setup template

STEP 4: Fine-tuning the styling. The default miniapplication that displays resource

properties presents the information in a tabular form – implicitly, it displays the

property name on the left side of the row and the value on the right. This presentation

is alright for the main panel, but the sidebar is too narrow, so that we need to alter the

stylesheet in such a way that the property name is displayed above the data. Let us

create a CSS file:

%LAYOUT_ROOT%/public/assets/layout.css

@media (min-width: 992px) {

 .layout-two-columns .side-panel .col-sm-3,

 .layout-two-columns .side-panel .col-sm-9

 {

 float: none;

 width: auto;

 }

}

Figure 44 Two-column layout custom CSS stylesheet

71

STEP 5: The layout is configured, now we need to verify the result, thus we are going

to create a custom view employing the created layout.

Figure 45 Two-column layout - setup of a custom view

Figure 46 Two-column layout - custom view

72

6.2 Performance

6.2.1 Testing methodology

To test the performance of the developed application, we are going to browse arbitrary

selected resources and measure the time it takes to display the resource. Each resource

will be accessed ten times and the resulting time will be calculated as an average of

the ten attempts’ times.

Because the developed browser embraces the Single-page application principle,

it takes some time to initially load the application. Due to this fact two sets of

measurements will be performed for each resource, one set consisting of the time it

takes to display the particular resource along with full loading the application, whereas

regarding the other set the application will be already preloaded.

The test will be performed on Opendata.cz SPARQL endpoint40 using these

resources:

1. http://linked.opendata.cz/resource/domain/seznam.gov.cz/ovm/ovms/Praha2

Total number of relations: 35.

2. http://linked.opendata.cz/resource/legislation/cz/act/2012/89-2012

Total number of relations: 3100.

3. http://ruian.linked.opendata.cz/resource/vusc/19

Total number of relations: 73000.

4. http://purl.org/vocab/frbr/core#Work

Total number of relations: 267325.

In addition, to include customization properties of the browser to the mix, each

resource will be displayed using a custom view consisting of a two-column layout and

arbitrary sorted properties.

40 http://linked.opendata.cz/sparql

73

6.2.2 Testing environment

The application will be tested in the following environment:

 Laptop Lenovo ThinkPad X1

o Intel Core i7-5500U CPU @ 2.40 GHz

o 8 GB RAM

o Windows 7 Professional 64bit

 Google Chrome browser, version 44.0.2403.107

 Internet connection: VDSL 16 Mbit download / 1 Mbit upload

6.2.3 Test results

Table 3 below shows the average times measured.

Resource number
Average time

Full load

Average time

Preloaded application

1 4.25 s 2.6 s

2 3.7 s 1.8 s

3 19.3 s 17.6 s

4 7.2 s 5.7 s

Table 3 Performance test results

6.3 Evaluation summary

Regarding the evaluation of customization options, the application satisfied all the

requirements defined in the Analysis chapter. Furthermore, it is safe to assume that

design and implementation of the application exceeded those requirements, especially

regarding the low level customization. It is evident that the introduction of

miniapplications instead of planned plain templates was indeed a great design decision.

As for the evaluation of performance, the application operates within required

time boundaries. A nice surprise is that the average time to fully load the application

is not much higher than the performance of preloaded application, which confirms that

the Single-page design approach is indeed a viable option and preloading all required

resources at once does not significantly affect the performance.

74

7 Conclusion

7.1 Achieved goals

The goal of the thesis was to identify key requirements for exploring Linked Data and

design and implement a web application which would serve as a Linked Data browser,

including certain customization features. In comparison to existing approaches the

application should have enabled the user to provide templates that would define a

visual style for presentation of particular types of Linked Data resources.

After a thorough research of existing Linked Data browsers, the analysis

proposed a two layer customization solution. On the lower level, the customization of

the application would follow principles stated in the original goal and enable expert

users to modify the default data presentation style by providing templates for particular

data types. In addition, the higher level of customization would allow non-expert users

– that is, users with no or limited previous knowledge of RDF or Linked Data

principles – to alter the final appearance of data presentation by creating a customized

view and rearranging the layout of the data of each resource. Based on the analysis, a

solution was designed and implemented.

Thanks to the two layer customization design, the developed solution exceeded

the originally declared goal, as it provides truly versatile and thorough application

customization options.

In comparison with existing identified solutions, regarding the expert users the

developed browser provides arguably the best customization opportunities, especially

thanks to the introduction of the miniapplication concept. However, regarding the non-

expert users, the developed browser undoubtedly outshines all existing products,

thanks to a unique approach of implementing the What You See Is What You Get

visual method of customizing the presentation of data.

7.2 Future work

The solution presented in the thesis offers a number of future work opportunities. First

and foremost, the developed browser could be extended to support plurality of data

sources at once and thus be able to obtain data from various data sources in parallel

and present the merged result to the user. However, such a solution will probably be

75

hard to achieve computing-wise as it has the potential to easily result in performance

drawbacks.

Another major possibility to extend the developed browser is to design a set of

default templates for existing dominant ontologies in the Linked Data world such as

Friend of a friend41 or Dublin Core Metadata Terms.42

Finally, let us conclude the thesis by a rather utopian, but all the more exciting

thought. Given the fact that the browser leverages Linked Data, and in the world of

Linked Data every resource has its own URI, it would be suitable to provide each

custom miniapplication, layout and view with such an identifier and create a global

repository of these customization elements. In addition, the developed Linked Data

browser could be extended to facilitate straightforward import of those elements to a

particular instance of the application just by providing a resource URI of the desired

custom element.

41 FOAF ontology. http://www.foaf-project.org/
42 Dublin Core Metadata Terms. http://dublincore.org/documents/dces/

76

Bibliography

[1] BERNERS-LEE, Tim, et al. The semantic web. Scientific american, 2001,

284.5: 28-37.

[2] BIZER, Christian; HEATH, Tom; BERNERS-LEE, Tim. Linked data-the

story so far. Semantic Services, Interoperability and Web Applications:

Emerging Concepts, 2009, 205-227.

[3] BERNERS-LEE, Tim. Linked data-design issues (2006). URL

http://www.w3.org/DesignIssues/LinkedData.html, 2011.

[4] RDF. URL http://www.w3.org/RDF/.

[5] JSON for Linking Data. URL http://json-ld.org/

[6] RUSHER, Jack. Triple Store, Feb. 2005. World Wide Web Consortium. URL

http://www.w3.org/2001/sw/Europe/events/20031113-

storage/positions/rusher.html.

[7] RAPOZA, Jim. SPARQL will make the web Shine. eWeek. 2006.

[8] SPARQL 1.1 Query Language. World Wide Web Consortium. URL

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

[9] SPARQL 1.1 Update. World Wide Web Consortium. URL

http://www.w3.org/TR/sparql11-update/

[10] RICHARDSON, Leonard; RUBY, Sam. RESTful web services.

O'Reilly Media, Inc., 2008.

[11] The Tabulator. URL http://www.w3.org/2005/ajar/tab

[12] Marbles. URL http://mes.github.io/marbles/

[13] DE ARAÚJO, Samur FC; SCHWABE, Daniel. Explorator: a tool for

exploring RDF data through direct manipulation. In: Linked data on the web

WWW2009 workshop (LDOW2009). 2009.

[14] Graphity Client. URL http://graphityhq.com/technology/graphity-

client

[15] BERNERS-LEE, Tim, et al. Tabulator: Exploring and analyzing linked

data on the semantic web. In: Proceedings of the 3rd International Semantic

Web User Interaction Workshop. 2006.

[16] SPARQL 1.1 Protocol. URL http://www.w3.org/TR/2013/REC-

sparql11-protocol-20130321/

77

[17] DAVIS, Scott. Mastering MEAN: Introducing the MEAN stack. IBM

developerWorks. URL http://www.ibm.com/developerworks/library/wa-

mean1/index.html

[18] Node.js. URL https://nodejs.org/

[19] JSON web token (JWT). IETF. URL http://self-issued.info/docs/draft-

ietf-oauth-json-web-token.html

78

List of Tables

Table 1 Comparison of the Web of Documents and Web of Data............................... 2

Table 2 Comparison of existing Linked Data browsers ... 15

Table 3 Performance test results .. 73

79

List of Figures

Figure 1 Example of Turtle syntax... 6

Figure 2 Example of RDFa syntax ... 6

Figure 3 Advanced example of Turtle syntax .. 7

Figure 4 Example of JSON-LD syntax .. 7

Figure 5 Example of a SELECT SPARQL query .. 8

Figure 6 Example of a CONSTRUCT SPARQL query ... 9

Figure 7 Advanced example of a CONSTRUCT SPARQL query 9

Figure 8 Example of an ASK SPARQL query... 10

Figure 9 Example of a DESCRIBE SPARQL query ... 10

Figure 10 Tabularor Linked Data browser ... 16

Figure 11 Marbles Linked Data browser ... 17

Figure 12 Explorator Linked Data browser ... 18

Figure 13 Quick and Dirty RDF browser ... 19

Figure 14 OpenLink Faceted Browser ... 20

Figure 15 Oobian Insight Linked Data Browser .. 21

Figure 16 LODLive Linked Data browser ... 22

Figure 17 Graphity Client LD browser .. 24

Figure 18 Justinian Linked Data browser .. 25

Figure 19 Flow of data presentation customization ... 28

Figure 20 Architecture and data flow overview ... 36

Figure 21 SPARQL DESCRIBE query ... 38

Figure 22 Example of a second level relation of a resource 38

Figure 23 Advanced resource describe query .. 40

Figure 24 Partial result of advanced resource describe query 40

Figure 25 Parallel resource description .. 41

Figure 26 A query to fetch subject relations of a resource .. 42

Figure 27 A query to request a subject property relation information 43

Figure 28 JSON web token negotiation ... 51

Figure 29 SPARQL query template example... 53

Figure 30 Custom address miniapplication configuration ... 60

Figure 31 Custom address miniapplication controller ... 61

Figure 32 Custom address miniapplication display template 62

80

Figure 33 Custom address field - default view .. 63

Figure 34 Custom address field - expanded view .. 63

Figure 35 Custom company miniapplication SPARQL query 65

Figure 36 Custom company miniapplication SPARQL query adapter 65

Figure 37 Custom company miniapplication configuration....................................... 66

Figure 38 Custom company miniapplication controller... 67

Figure 39 Custom company miniapplication display template 68

Figure 40 Custom company miniapplication default view .. 69

Figure 41 Two-column layout configuration file ... 69

Figure 42 Two-column layout display template .. 70

Figure 43 Two-column layout setup template ... 70

Figure 44 Two-column layout custom CSS stylesheet .. 70

Figure 45 Two-column layout - setup of a custom view ... 71

Figure 46 Two-column layout - custom view .. 71

81

List of Abbreviations

 LD Linked Data

 URI Uniform Resource Identifier

 URL Uniform Resource Locator

 HTTP HyperText Transfer Protocol

 HTML HyperText Markup Language

 XML Extensible Markup Language

 XSLT Extensible Stylesheet Language Transformations

 JSON JavaScript Object Notation

 JSON-LD JSON for Linking Data

 MVC Model–View–Controller Architecture

 REST Representational State Transfer

 CRUD Create, Read, Update, Delete

82

Attachments

A ZIP file containing the developed application is attached.

An instance of the application is also available via the Internet on the following URL:

http://linked-data-browser.herokuapp.com/

Installation requirements:

 Node.JS version 0.10 or newer.

 Python version 2.7.

 A web browser.

Installation instructions:

1. Extract the attached archive to a desired directory.

2. Open Node.JS command prompt and navigate to the directory containing

extracted application files.

3. Run command “npm install” to install the application.

4. Run command “node bootstrap.js” to initialize the application.

5. Using a web browser, navigate to http://localhost:3000.

