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Abstract

Against the massive work put into what has catalyzed into the concept of Web 3.0, the promise of a
single semantically charged Internet seem to continue to elude the IT community. The present work
raises the flag on a trend that the author believes to be at the heart of this lack of success, namely the
that of the lack of a common reality. It is being argued that the structure oriented approach that stands
at  the  base  of  virtually  every  representation  system,  ultimately  leads  to  frictions  that  cannot  be
reconciled and as a consequence prevent the formation of what would be a true revolution in the IT
industry: the semantic web. The paper continues by proposing an alternative solution to knowledge
representation which does away with structure relying instead of pure semantics which is borrowed
unaltered from human language. The paper further argues that this paradigm shift can also be the
catalyst that is needed to open the way to free flow of information and later to the formation web 3.0.

Keywords: structured data, semantic data, computer communication, b2b, concepts, natural language,
knowledge representation, web 3.0
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The Case for common reality 5

1∘The Case For Common Reality
It would probably be safe to assume that the intended audience is already familiar with the conceptual
differences  between  data,  information  and  knowledge,  these  are,  after  all,  the  pillar  concepts  of
information technology. It is non-the-less, important with regards to the outcome of the work, to talk
about them and emphasize certain aspects of them, as they stand at the base of plot the current case is
built upon.

1 .1  ∘  I n fo rmat ion

If we are to look at the definition of the terms as found in the English Language Dictionary we can see
that the terms are not clear cut and depend heavily on each other:

Data,  “is  factual  information  organized  for  analysis  and  processing”,  Information,  “is  knowledge
derived from study, observation and experience” and Knowledge, is defined as “the state of knowing,
or possession of specific information about a certain subject”. 

The definitions go full circle and they are all centered around our capability to observe, remember and
adjust our future actions according to the things that we observe and remember. This is what most
consider  Knowledge to be, more informally speaking: the totality of facts that we can observe and
remember coupled with our ability to manipulate consciously the course of our actions based on them.
The  facts  that  generate  the  decisions  associated  with  knowledge,  are  chunks  of  information:
conglomerates of facts that make sense together in a given situation enough so they can trigger that
change in behavior. This aspect of making sense is essential to  Information, without it there is no
reaction, there is no knowledge, it's only Data: random facts, observations devoid of context that do
not  make  sense  on  their  own,  but  which  can  nevertheless  be  recorded,  replayed  and  otherwise
manipulated.

Information is always semantic, it has meaning, whereas data is not. So if we are to create a hierarchy
between these terms,  Data,  would sit  at  the bottom and represent the blind facts drawn from the
environment. When processed and put into context so that it makes sense it becomes Information, and
when the totality of the information is put together so that decisions can be made Knowledge arises. 

In the day to day human life we don't really operate with data, as it is a form of storing facts which is
useless  in  most  cases,  not  being  readily  accessible.  In  our  heads,  we  don't  store  data,  we  store
information, facts that are relevant to our own, personal existence, facts that are highly connected and
very readily available making them highly valuable in the day to day decision making process. When
we read a book, the letters of the book are data, but we are not concerned with those, not consciously
anyways, we are driven inexorably towards extracting the information from the book: we read until it
makes sense. The human mind, is not designed to work with data but the concept was born anyway
(even if it was not consciously termed at that point) from necessity when some people needed to work
with other people's information.

Evidently when one operates on other people's information, this (the information) will loose some or
all of its meaning, so other forms of mechanisms need to be put in place to ensure the information
survives a transitory meaninglessness. For example, one can copy an entire book and not understand
its content, nevertheless, the information in the book is preserved, even transferred into the new book
thus being multiplied. Information can survive meaninglessness, and can even be manipulated in this
meaningless state, but it is essential that an individual who does understand the information encodes
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(It) into this transient form, and makes it available to the data processor which does its job. Later
another individual with capability to understand the information has to decode the data and make
sense of it. 

In today's world it is the IT professional's duty to put the information through the semantic grinder and
transform it into this meaningless state in which it can be manipulated by the computer, but in a world
where we are trying more and more to make sense of the vast amount of Data that we have come to
collect, this skill that we readily learn as soon as we step into the school is becoming more of an
impediment rather than an asset. It is more and more difficult to discern where information ends and
data begins, and all too often the very code that is destined to hide the meaning is confused with the
meaning itself.

While  the  field  of  Information Technology contains  the  word “information” in  its  name,  perhaps
because it  is  meant to bring information to people,  to create information and better  the decision
making process its object of work is in fact data, not information. Information is very difficult to work
with because it does not have clear boundaries. Data is stable, stand alone and context independent;
one can always count on data to be data, but information depends on the subtlety of meaning which
varies enormously from situation to situation,  from interpreter to interpreter.  What may represent
information  in  a  certain  context  it  may  be  meaningless  raw  data  within  a  different  context  or
something  in  between.  While  data  can  be  quantified,  stored  and  framed  between  certain  limits,
information will always be a gradient of values that depends heavily on who observes it and how it is
observed.

It is not difficult to understand that due to this intimate nature of information, people who work with
it, find it difficult to draw the line between data and information. We are intelligent creatures, we
possess knowledge and we operate with information on a constant basis. Whenever we look at data we
will strive to make sense of it and we will always find some information that hides in there. Yet more
often than not, the information that we see is just an illusion, a residual flicker of our thinking process
interacting with the data that we operate with. Once that data is disconnected from us and becomes
exclusively part of the cybernetic environment that entire meaning is lost. It can exist no more. Unlike
us, the cybernetic system lacks the spark that is needed to transform data into information and our
programming techniques are not doing a great job in improving this handicap. If we are to step into a
new, semantic era, where information is stored in meaningful state outside the brains of individuals,
we need  to  reanalyze  what  information  is  and  what  it  represents  and  we need  to  understand  its
limitations and particularities. We need to especially understand how meaning (semantics) connects to
data and the way they, together, create Information. 

1 .2  ∘  Sub jec t i v i t y  &  I ncomp le teness

As opposed to data, information cannot exist on its own. It arises dynamically from the interaction of
data with that which makes use of it. It is a disconcerting feeling for a computer scientist to realize
that information, the very object of his profession is not perfect, but rather something that will be
different to every single user that observes it.

To emphasize this imperfectness, let us consider the following statement:
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example: 1

“The man is 35 years old.”

It  is  a well  formed statement that  conveys a very valid piece of  information about  the person in
discussion, but to most of us, this sentence contains no real information. In the best case it is a piece
of data torn out of a context that we are not aware of. In order for this to represent actual information
one requires considerable knowledge in what this specific context is concerned: “Who is the man?”,
“When was this stated?”, are just two of the questions that can immediately be asked by somebody
who's reading this single sentence in a transcript of the underlying conversation, not having a context
to place it in.

example: 2

“The man who lives on Elm Street 99999, apartment X, Aukland, New Zeeland is 35 years old.”
“The man who lives on Elm Street 99999, apartment X, Aukland, New Zeeland was 35 years old in year 
2013.”

The somewhat more complete sentence in  example: 2 can quickly respond to these questions, but
again the statements imply a great deal of assumptions about who is going to read them: “What is an
Aukland?”, “What is a New Zeeland?”, “What does year 2013 actually mean?”.

The fact of the matter is, that regardless of how much we describe the scenario, there will still be
questions that are unanswered and assumptions that have to be made regarding a-priori knowledge
possessed by the data consumer, regarding the context in which the information resides.

This  effect  is  not  limited to information conveyed via  spoken or  written language.  Any object  is
potentially describable by an infinite or unreasonably large amount of attributes, some of which may
even be inaccessible, and as such any information drawn from that subject is inherently incomplete.

Failure  to  recognize  this  aspects  could  have  grave  consequences  with  regards  to  information
processing. If one does not recognize and accept incompleteness of information one would be tempted
to analyze an object ad infinitum, trying to grasp all the details and characteristics of it. The process
itself would likely generate an information overload. In the world of humans though, this is not the
case. The human brain is very well equipped for these particularities. Most of the time it will only
draw just as much information as we actually need to identify important aspects about the object:
categorize the object, identify whether it is dangerous, useful, etc. Irrelevant facts, even if identified,
are quickly forgotten making room in the memory for the next thing.

This selective observation (extraction of information) takes us directly to the other important aspect of
information:  subjectivity.  All  subjects  draw  information  using  their  own  particular  sensors  and
interpreters and will filter it through their own preexisting knowledge and angle of interest. As such
they will identify particular aspects of the object that are unique to them, thus giving information a
highly subjective character. 

It will become clear later on in this chapter, why these two seemingly evident characteristics are so
important within the context of “knowledge representation” and how present representation systems
fail to properly account for them.

1.2.1 ∘ Information Transfer (communication)

When it  comes to the individual,  subjectivity  is  not  all  that  evident  because there is  no point  of
reference,  but when we look at  the case of information transfer,  it  becomes obvious that  it  is  so
essential, that failure to recognize it would render communication impossible. If subjectivity would not
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be recognized and dealt with, two subjects could never communicate because they would never be able
to establish consensus about the objects of their discussion. In the world of human communication,
this does not happen either,  because the brain can calculate the various degrees to which certain
information is particular to itself, the individual, the group of individuals that are communicating or
larger, more complex circle of individuals. Common concepts that uniquely identify objects, within
particular contexts, are conceived such that they are precise enough to serve their purpose yet loose
enough to allow for individual perspective. For example there is a pretty wide consensus of what the
color “red” means and people don't usually argue about the “redness” of an object. They may however
have different perspective on certain shades like, light pink versus light violet, where some will see it
pink and some will see it violet, but these cases are rare in human communication, as language is
designed to grasp what's common not what's different.

1 .3  ∘  Common  Mean ing  I n  Human  Commun ica t i on

In the world of human communication, common concepts are extremely important not only because
of the characteristics themselves but because they uniquely identify objects or classes of objects and
determine the common reality of the communicating subjects.

Illustration 1: Person to person communication, common 
reality (definitions)

When information is transferred this way, the absolute priority is determining the nature and identity
of the object of the discussion first: what that object is, what it represents for both parties, what its
common meaning is. Only after the common meaning is established, structural information, or details
about the object, can come into discussion.

When two people speak, the information transfer is possible because both brains, the sender and the
recipient relate to the same “reality”, be that the real world or some abstract world like mathematics or
feelings. The recipient may be a doctor and the sender a banker, but when the “Person” word is
invoked both of them associate it with an individual in the real world. They may know many different
characteristics about the person particular to their profession, but when they speak, none of those
particularities matter. What matters is what they have in common and to access that, they need an
absolutely simple common pointer, which is the concept of “Person”. The simplicity of this is so
powerful, that even if they speak different languages they can actually transmit the information using a
dictionary, because regardless of how the word is pronounced or written, it references the same simple
concept in a reality that is common to both parties, Illustration 1.
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Sentences can be translated the same way. Rules (grammars) may be different in different languages,
nevertheless they are based on the same reality, on the same objects, on the same actions, on the same
context (time, person, possession, command, etc.) and as such, a translator, somebody that knows both
languages, can transpose the sentences (these conglomerates of objects, contexts and rules) from one
language to another such that the reality, the semantics of the message stays intact. The fact that this
reality is common is a sine qua non condition why such translations are possible. Each language is in
fact an encoding of the reality of people that speak it and when a translator has knowledge of both
encodings and the encoded realities overlap sufficiently, he or she can transcode this portion of reality
from one encoding to the other without any losses. If however, one of the languages lacks a term for a
concept, this usually occurs when the reality of the people who developed the language lacks the
concept itself altogether, translation becomes difficult or impossible.

The Pirahã language, for example, has no cardinal or ordinal numbers. Why this is, is still subject to
academic debate: some argue that the Pirahã people cannot learn numeracy, others advocate that they
can count but they choose not to. Whatever the reason, translating example: 3 into Pirahã in an exact
manner, is impossible, as their reality lacks a concept behind the source language, numbers:

example: 3,   Partially translatable sentence

“Twenty people went hunting and they brought back three pigs.”

For the Pirahã,  numbers don't  exist.  A translator  might be able to approximate the meaning and
transpose  it  to  the  other  reality  with  some  information  loss.  Instead  of  “twenty”  they  can  use
something akin to “many”, instead of “three” they can use something like “few”. This is a much more
difficult job to do than simple translation, because direct correspondence between realities does not
exist.

An interesting aspect of this translation process is that we, who's reality is compatible with that which
English language models, would be tempted to say that the translation occurred with information loss,
simply because the Pirahã reality lacks some fundamental aspect of the actual reality, and so, a back
and  forth  translation  will  not  restore  the  information  to  its  original  state.  This  view,  however  is
judgmental and incomplete. The Pirahã reality does capture multiplicity / quantity, but it does so in
different forms, which is not fully compatible with ours. The proper way to see this is that the two
subjective realities are fundamentally different from this point of view and hence the translation occurs
with information loss not because one reality is  deficient,  but because the two subjective realities
contain concepts that are not fully compatible.

With such fractured reality, translations is only possible provided that some level of correspondence
does exist between the two realities within the domain of the information being transferred and that
the translator knows both these realities well enough to make a correlation. On the same token, the
translation in the example: 4 would be utterly impossible, because there is nothing in the message that
could remotely be correlated to the Pirahã reality1:

example: 4,   Untranslatable sentence

“Three brokers sold ten thousand bonds today on the stock market and made a million dollars in profit.”

In case of this sentence, there is no common reality that a translator can refer to in translating the
sentence. Their world is based on different values as ours, from this particular angle, and as such there
is nothing of value to them in this sentence. This particular information cannot flow from one side to
the other simply because there is no context (meaning) to give birth to information on one of the sides.

1 The Pirahã are an indigenous hunter-gatherer tribe that live in the Amazon basin.
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There is no reality behind the data. For fairness of treatment, I must point that for obvious reasons it is
impossible  to  me  to  give  an  example  of  a  sentence  (information  conveyed)  that  would  transmit
something that exist in Pirahã world and does not exist in ours.

It  is  I  think  reasonable  to  state  that  the  reason  why  computers  have  such  difficulties  in  human
translating language may be that they do not “understand”2 the reality in which the sentence is based.
Computers are  unaware of the meaning of the sentence and as such they must rely on translation
between words and grammar and statistical matching, which highly inaccurate and sometimes can be
confusing. 

Computers don't have a reality and whether they can have one remains to be decided by future AI
research. Until then, short of learning the correspondence in languages for every single expression that
exists out there, translations will be imprecise. Even if the future computers will possess an internal
cognitive  process  akin  to  consciousness  that  reflects  in  some  sort  of  reality  that  they,  among
themselves share, it is still questionable whether they'll be able to translate our language. For that to
happen,  they  will  also  have  to  sense  our  reality  because  only  then  can  they  create  precise
correspondence between real concepts and information written.

1 .4  ∘  I n fo rmat ion  I n  Compute r  Prog ramming

The essence of computer programming is the creation of software, packets of instructions, that can
tell  generic  hardware,  such  as  computers,  to  perform  a  specific  task.  There  are  numerous
practicabilities of software but the current paper targets a specific branch of this industry, which is
concerned  with  the  information  manipulation  and  interchange  at  high  level.  This  branch  deals
extensively with the abstraction, collection, organization, storage and exchange of data that is collected
from reality, therefore, “information in computer programming” will be analyzed from this specific
angle.

It is important to re-iterate, that although we are discussing about information manipulation it is really
data  that  is  being  manipulated.  The state  of  information  is  lost  the  moment  it  is  entered  into  a
computational system, and it will exist in this meaning free form until an operator makes sense of it.
Evidently not  all  information survives  this transitional  process,  a lot  of  it  is  lost  the moment  the
encoding happens, because the process can only capture information for which an encoding system
exists. All the rest of infinitely complex reality behind each concept is lost, or presumed to exist at the
destination and be identifiable from the data being transmitted.

1.4.1 ∘ Types, Static Reality

Data types or simply types, are categories of data based on limitations on the values that they may
have making them easier to manipulate. 

At  machine  code  level  the  boundary  between  data  and  instruction  becomes  less  evident  so
programming languages like Assembly had no need for data types. But even the simplest of operations
are arduous to implement in such languages and with the rise of applications that were concerned with
the  manipulation  of  data,  the  higher  level  programing languages,  the  concept  of  Type appeared.
Having predefined limitations on their values, brought inherently by certain characteristics imposed

2 Make sense of the information and its context with respect to the reality in which it is defined
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a-priori,  it  became  easier  to  implement  sets  of  instructions  (operations  and  functions)  that  can
manipulate these groups of data without the need to know their values prior to the construction of
these functions.

There is an important aspect to be said with regards to the type. The type itself, the category to which
data belongs to can and often is  information.  It  is  probably the only kind of information that  is
available to the computer software and not the human operator. Because the type often determines the
kinds of operations that can or must be performed on pieces of data, it represents an element that can
be a precursor in the decision making process of the computer software. Even if such decision making
process is nothing else but a pre-programmed set of instructions, it nevertheless is a sort of knowledge
mechanism (see more at: 1.4.5 Semantics, The meaning Of things).

◊  P R I M I T I V E S

Primitives are the most basic of data types and have the widest acceptance of all the types. Almost
every programming language makes use of them and are usually part of the core of the programming
language.

Although they may be called different names (“int”, “integer”) in different programing languages they
usually refer to the same thing and they are needed because they represent a necessity of the computer
programming reality. Contrary to what the name suggest, an “Integer”, is not any mathematical integer
but rather only one of the mathematical integers in the range [-231, +231-1], that are representable on
32 bits. As such, the Integer type is a partial wrapper of the mathematical integer numbers combined
with a wrapper of a limitation in the computing reality: that information is ultimately encoded in bits
(ones and zeros) and only a finite number of bits fit onto physical devices such as a block of memory
or the stack. If more precision is needed, a wider range type can be used called “long integer” which
can take value in the range [-263, +263-1], a 64 bit representation system, nevertheless, it  will  still
represent the combined concept as in the case of simple simple int.

example: 5,   Some common primitives

• boolean: represents a logical value (true or false, one or zero) on a bit.

• integers: represents an integer value in the range of [-231, +231-1] or [-263, +263-1], 

• floating points: represent a real number in floating point representation. The range is
much larger than that of integers for the same space they occupy. The precision varies
with the magnitude of the number: the larger the numbers, the bigger the gap between
two consecutive representable number (as real numbers have infinite precision and as
such are impossible to represent with finite resources).

• character: represents an alphanumerical character on a byte, usually

• string: represents a sequence of characters, arbitrary texts (usually human readable)

• byte array: represents a raw sequence of data of any kind (usually not human readable)

These primitives (the most basic level of them) are a lot more about representation rather than the
actual meaning of what they encode: concepts like integer, or real are only loosely encoded into these
types. In fact, if arbitrary precision is needed for special purposes like scientific data or accounting,
custom representations  need  to  be  created,  like  BigInteger  or  BigDecimal  in  Java  programming
language, because regular primitives are not suitable.
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These things may not be new for the intended audience, but it is important to name them because
there is a lot of confusion between the concept and representation of the concept, that stem from the
fact that the representations are named suggestively to match the concept that they loosely encode and
make it easier for the developer to work with.

In fact they could be just as well be named “regetni”3 or “elbuod” or “naeloob”, because it would be
just the same from the compiler / interpreter or machine code's perspective. They would only be a lot
harder  to  work  with.  This  is  why  virtually  all  programming  languages  that  use  mathematical
operations will name the integer type suggestively as “int” or “integer” and as such, the terminology
became universal.

Rarely do any programming language extend their set of primitive types beyond these representational
primitive. It is the responsibility of the developer to correctly encode any custom concept onto these
universal structures such that it captures all the subjective information regarding those concepts within
the context of the client and the provided specification.

◊  V A R I A B L E S

Before we get to the structured data types, it is important to mention the concept of variable, another
extensively used artifact in computer science. In programming (at least from the aspect discussed by
this paper), variables are containers that can be used to store values and operate on them.

example: 6,   General format of a variable.

Type name = initial value;

Variables are usually defined as an identifier (a name) which is used as locator for the stored value
(stack or memory), a type that serves as constraint for the values that can be assigned to the variable
and it may also contain an initial value. Identifier is usually ubiquitous in all languages except for very
low level languages like Assembly4, but the other elements vary from language to language.

This seemingly simple construct is so powerful that it is used everywhere in computer programming.
Everything  from simple  memory  zones  allocated  for  temporary  storage,  cells  in  a  spreadsheet,  a
database or a dot on the screen can be thought of as a variable: a container in which value can be
stored. This concept of placing a value in a container is essential to the computing process, it is the
only way operations can be made in a serial system, but beyond that, things like type and name are
really irrelevant once the software becomes machine code. Nevertheless they are extensively used and
very popular too, because both, type and name have the power to carry semantics into the process of
creating the computer program. We do not give it a lot of thought, but the fact that we can assign
meaningful  names  to  variable  revolutionized  computer  programming.  We'll  discuss  more  on  this
subject later.

◊  A R R A Y S  &  M A T R I C E S ,  G R A P H S ,  T R E E S  &  M A P S

It  is  sometimes useful  to be able to work with collections of data which can be handled in bulk
according to some characteristics. Arrays, matrices (multi dimensional arrays), lists, sets, trees, maps
are all such collections.

3 Integer written backwards
4 Assembly language is an instruction oriented language which is very close to machine language. Variables are not

used, operations are done by inserting values directly into memory addresses or operator registries.
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It is important to note that although programming languages treat them under the same umbrella,
these collections are not in fact data types, but rather compound variables. Variables that have multiple
slots where data can be placed, according to specific rules, some fixed some dynamic in nature. In the
case of arrays and matrices, which are similar to those in mathematics, the slots are accessible by their
position, and they can have uni or bi-dimensional structure respectively and occasionally even more. In
the case of linked structures like linked lists, trees, or graphs, access is done according to the relation
between elements. People that are still familiar with older programming languages like Standard C or
Pascal, can recall that these linked data structures did not even exist, back then as part of the standard
API. They had to be defined as collections of dynamically allocated memory zones and then linked
with one another.

Maps are interesting because they are very similar with the concept of structure, as elements in a Map
are accessible by their names, so to speak, and as such additional information exists besides the value
of the variable itself, in the form of a key or a name. As opposed to structures, this information can be
carried into the application, and be part of the program's execution.

◊  S T R U C T U R E S

Concepts and values handled by these modern information manipulating applications go well beyond
simple integers or reals or values of truth. To be able to easily manipulate data that are complex,
structured types were created out of which developers can construct complex types that represent
complex concepts from reality.

example: 7,   Structure

Book{
String title;
String author;
String publisher;
Date datePublished;
string ISBN;
etc …

}

Suppose the concept of Book has to be wrapped in a computer program and that in the eye of the
client a book would be described by a series of properties, such as title, author, etc … example: 7. As
such, these properties have to be treated together for each individual book, otherwise it  would be
really difficult to track all these properties.

Structures contain ordered groups of data items. Unlike the elements of an array, the items within a
structure can  have varied data  types  and  are  accessible  using similar  syntax as  variables.  Classic
programming languages treat these these properties as the definition of the type, in the current case a
Book, and model them conceptually together with various paradigms.

The Relational Model, considers the type book as a relation between the typed items that construct the
book and packs them together in relations (better known as tables), where each row is a group of
values that together represent an individual relation, a book in our case. The final structure is in fact a
matrix  of  values,  where  the  rows  represent  individual  relations  (book  entries)  and  each  column
represents one particular aspect of all  known (stored)  relations.  A language was built  which very
efficiently handles manipulations related to the storage of the data in this form (storing, recovering,
filtering, etc …) due to the reduced complexity of the architecture (both structure wise and operation
wise). To make a blunt analogy, databases are memory zones, with each table being a matrix like the
one mentioned above accessible via a variable, which is the table name. 
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To efficiently handle data like Book, programming languages don't treat them as arrays of coupled
values, but rather like structures, variables that have variables inside. Instead of  book = {book[0],
book[1], book[2], … }, it becomes book = {book.title, book.author, book.publisher, …} which is a lot
easier to work with. The approach allows developers to embed semantic elements into the construction
of  the  program,  the  source  code,  an  aid  that  makes  the  program many  times  easier  to  develop,
maintain, upgrade, handed over to other developer, test, etc …

1.4.2 ∘ Operations & Functions

The vast majority of programming languages in use today are structured languages. The structuring
refers to grouping functionality together into loops, blocks of codes and subroutines in contrast with
the  using  the  “go  to”  statement  which  was  used to  jump to  different  parts  of  a  single  chain  of
commands. This structure improves clarity and re-usability of code.

One of the most notable features of structured programming are the subroutines, also called methods,
procedures,  function,  etc.,  depending  on  the  language  but  they  essentially  consist  of  subsets  of
instructions, grouped together to perform a specific operation in a black box like fashion: whoever
uses the code only needs to know what goes in and what comes out (in terms of types), in case of
functional languages and additionally how the subroutine modifies the state of the application in case
of imperative language (which are the vast majority of them).

There are many paradigms of computing regarding functions (declarative, function, logical, and so on)
which impose restrictions on how these subroutines should act regarding the computing environment
(some change state, others are not allowed to change state only have output) but the vast majority of
languages that handle data modeling (procedural programming or object oriented programming) apply
the concept of the subroutine as a mixed concept. They are allowed to have, or not to have, a return
value and they are also are allowed to have side effects (affect application state beyond the scope of the
function and its return value). This versatility, is a compromise, which is necessary in most cases due
to the complications that arise from using a strict paradigm like procedural programming does. The
benefits are increased efficiencies, re-usability, but there are also drawbacks to this approach.

These functions rely almost exclusively on structure imposing very little  limitations  which can be
detrimental when it comes to inference (use of deductive reasoning) and code automation because
there are no basis on which such paradigms can be implemented. The interior of the subroutine can be
as long (verbose) as the developer deems fit, can perform any number of changes to the state of the
application as a whole: write to disk, network, change user interface and so on. While these are all
necessary things, the fact that they are allowed to be performed all in one place is a huge handicap
from the perspective of semantics.

Operations  on  the  other  hand  are  code  snippets  that  usually  wrap  a  single  action.  Examples  of
operations are the mathematical plus “+” operation, subtraction, multiplication, logical operations like
greater than “>”, and so on.

Operations are often regarded as simple, semantically charged activity entities. Operations strongly
wrap the concept what they stand for, the restrictions they impose on the operands (parameters) and
for  this  reason,  operator  overloading  has  often been  criticized  that  it  allows  developers  to  create
operations that are confusing by using an operator that wraps a concept, for example the “+” sign, and
implement code for it that perform a totally different concept, like adding an element to a set5. It is

5 One could state that adding an element to a set has similarities with the addition of number, for what the + sign stands
for, but the similarities are brought in by the similarities in language. The two concepts are completely different.
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notable how people observed this fact and even argued against operator overload for feeling the need
to preserve the semantics of the activity across code and even language. This is especially interesting
because functions suffer from the same problem too, (see 1.4.3 -  Functional confusion), yet nobody
seems to be bothered by that. The reason for this bias could be a combination of computing reality
and developers' need for semantic information. Operations come from mathematics, are very strict in
nature and we are taught to like that strictness because it is very reliable:

example: 8,    Result of the + operation based on the input

n + n1 = n2, for n, n1, n2  ∈ ℕ
n + r = r1, for n   and r, r∈ ℕ 1  ∈ ℝ

The definition domains (types) of input and output values are so compact, so simple and so strict, that
there is absolutely no doubt in the formulation. It is elementary, it conserves the concept and the same
way mathematical proofs can be built on it, so can automation inside a software.

The problem is that operations are few because mathematics is only concerned with a limited aspect
of our reality and these operations are designed to serve that strict concern. Programming on the other
hand has many and various needs outside the scope of mathematics (conceptually speaking). Adding a
button to a canvas object or watching for events on the network have no mathematical counterpart. To
serve these many and various needs the functions (subroutines) were developed. These functions have
loose definitions to be versatile, as opposed operations but as such they lost the semantic charge and
developers have learned to accept that as a fact. 

1.4.3 ∘ Functional Confusion

If we were to show the general function definition in computer programming to somebody whose is
not a software professional it would be nothing more than an unintelligible collection of words.

example: 9,   Schematic definition of a function

[language specific modifiers] result_type function_name(
parameter_type_0 parameter_name_0,
…, 
parameter_type_n parameter_name_n){

…
function body
...

}

As strange this may seem to the audience, the reason for this is that the generic definition form is
nothing more than the definition, of the definition, of functions. The words are laid down in a very
specific order, certain delimiters are used to separate words like, “modifier”, “return type”, “function
name”, “parameter name”, and so on6 that make absolutely no sense to the untrained eye. This aspect
may seem unimportant, considering that such people do not get deep enough into the technical side of
applications for this to matter, however this emphasizes how in the understanding process of human
beings, structure means nothing without context and meaning.

If on the other hand such a person takes a look at an actual example of a function, he or she might be
able  to  comprehend  what  the  function  is  suppose  to  do,  even  if  they  had  no  connection  with
programming, provided they are familiar with the terms used in the function:

6 Notice the lack of underscore in the enumeration. Humans outside the technical realm, who do not understand the
importance of space versus underscore from the perspective of parsing will not give any importance to it.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –



The Case for common reality 15

example: 10,   Intelligible function example

Number divide(Number nominator, Number denominator){
return nominator/denominator;

}

Even if this person has never seen an operation written like this, but has knowledge of the division
operation between numbers, he or she can realize that this operation is what the layout is actually
about. This is possible because the words themselves “number”, “divide”, “denominator”, “nominator”
have very well defined meanings in the individual's intellect and together they hint towards the division
of the nominator by the denominator.

It is not the structure of the function that leads the person to this conclusion, it is the combination of a
certain set of concepts that together lead to a unique conclusion. It could be presented in any other
form, as long as the person has knowledge of the division of numbers he or she would still come to the
same conclusion. In fact the irony is that the function could actually do a completely different thing,
with regards to the implementation,  as long as the person does not see or cannot understand the
implementation  of  the  function,  would  still  conclude  that  the  function  performs  a  division.  This
scenario however is not likely, because the fact  that  the function is  laid out and named such is  a
consequence of  the  need of  developers  to  embed additional  knowledge in  the description of  the
function which makes it recognizable and easy to work with.

Compilers completely do away with these human readable information, because programs do not need
them to perform their pre-programmed jobs:

example: 11,    Function stripped away of semantic hints

Number a(Number b, Number c){
return b/c;

}

the definition in  example: 11 is just as good from a computer's perspective, if only a programmer
could keep track of functions that way.

The computer can do this,  because the program, when finished, does not require meaning in the
operations only series of correctly laid out operations that in the end can yield the expected result. It is
the  cognitive  process  of  creating  the  program  itself  which  requires  additional  knowledge  to  be
embedded in these functions and the definition form of function allows that for most programming
languages7. 

For simplicity, this knowledge that can be embedded in the description of the functions while building
computer programs is  not regulated. Neither is  the order of the parameters,  or their type. It  is a
generic scaffold that can be used to implement a great variety of operations, even multiple variations
of implementations for the same operation.

The function:

7 Assembly language will not allow for such knowledge but languages like this are very rarely used and usually for small
scale applications or modules.
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example: 12,   Division function with parameters in reversed order

Number divide(Number denominator, Number nominator){
return nominator/denominator;

}

gives the same result as the one defined in the previous example but the input parameters need to be
provided in a different order: 

example: 13, Call of division function for different implementations

divide(10, 5) = 2, in case of the definition at example: 10
divide(5, 10) = 2, in case of the definition in example: 12

The  program  itself  will  not  make  this  distinction,  the  programmer  has  to  do  it  during  the
programming procedure and make sure the functions are used in the correct form. Failure to do so,
result in errors in program that may be very difficult to find. For this reason, functions are usually
accompanied  by  documentation  which  provide  even  more  details  about  the  way  they  behave,
exceptional situations8, parameter types, and so on.

Notice that although the order of the parameters were reversed in the declaration of the function, they
appear in the same order in the body of the function:

example: 14

nominator/denominator

This is because the names themselves were chosen to represent the position of the number with the
operation that  the function is  supposed to  perform. In a  division in  mathematics,  the concept  of
“nominator” represents the number that is being divided and the “denominator” the number that is
being divided with. By using these names, it is easier for program developers to use the function. Had
we used the conceptless representation like in example: 11, there would be no way of knowing which
one  is  which.  Within  the  context  of  a  programmer's  knowledge,  such  names,  represent  real
information,  because the names themselves are semantic charges that  link whatever is  being done
there in the code to the actual reality that exists in the programmer's head and as a matter fact in the
entire reality (mathematical reality in our case) shared by all programmers.

After compilation, functions become machine language. They are stripped of all  meaning, leaving
behind an optimized chain of commands, which the machine executes blindly until it reaches an exit
point.  This  is  what  software  is,  stacks  upon  stacks  of  commands  interacting  with  a  layer  of
standardized  interfaces  and  communication  protocols  making  it  very  difficult  to  quality  test  an
application: the machine can't do it, because it is not supposed to and it does not have the means,
people can do it but they are basically testing a black box, which sometimes can be really complex.

1.4.4 ∘ Type Confusion

When applications are built, the business information scaffold is captured by the engineers, who create
data structures by way of which a particular subset of the information can be stored, manipulated and
if necessary communicated,  Illustration 2. When such communication need arises, the engineers of
the two applications agree on a common structure, which is used to encode information onto simple,
highly standardized protocols, like HTTP, TCP, IP, Ethernet.

8 In the given example, division by zero is a mathematical impossibility and thus cannot yield a number as a result. This
is an exceptional situation which is handled differently.
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Illustration 2: Common interface, 
definition (source code) perspective

 

Illustration 3: Common interface, execution 
(compiled code) perspective

Information is transferred as an unstructured payload of bytes via these mediums and is then decoded
based on this common structure or interface after which,  the received data becomes available for
processing at the destination. All these commonly used interfaces are grouped together in an API
(application  programming  interface)  and  serve  as  a  protocol  for  communication  between  the
applications of the two parties (The Principles of a Semantically Rich Data Representation System).

But once the application is compiled and deployed the semantics of the information that are stored in
the code are lost to the software the very same way they become lost in the case of functions. Names
are removed and any semantics associated with them that would be capable to confer it information
status is destroyed. Whatever is put in there it becomes data. As such, a human is needed at each and
of the underlying applications to input and interpret the data and turn it into meaningful information
again. The vast majority of data manipulation software today are not concerned with the meaning of
the data that they manipulate. After the information passes the user and enters the system, it turns into
a meaningless structure like in  Illustration 3. This way it  is imperative that an exact match exists
between the structures used for information interchange, because it is the only constant that exists at
that point (during application run-time) within the application. Failure to adhere to that will result in
the data becoming deteriorated and the resulting information will be corrupted as it would be based on
erroneous data.  This strictness of the system and the lack of persistent semantics is  an enormous
impediment in the standardization of this layer of communication. 

Needs regarding information capture and encoding are enormously various, there are as many as there
are observers. Different businesses capture different characteristics of certain concepts, for example, a
financial  institution  like  a  bank,  would  be  interested  in  financial  aspects  of  person,  like  income,
employment, assets owned, a health institution like a hospital would likely be interested in things like
body mass index, age, history of diseases in the family, allergies, etc, whereas an institution like an
insurance company would probably be interested in a subset of both. There is no one single structure
that can universally define a person, so if the three institutions are to interchange information, they
need to agree on a strict API that is usable to all three. Unfortunately as the number of the potential
participants in the communication raises and their focus broadens, the common interface becomes so
clunky that it would be very cumbersome to use. Even if such, all encompassing interface, could be
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built and enforced, there still is the potential of a future business that would need yet an extra feature.
This would invalidate the standard in place and generate an extraordinary effort to bring the industry
up to date with the new standard.

Due  to  this  lack  of  standardization,  communication  is  limited  to  prearranged,  pre-programmed,
interfaces that are build into the software and very costly to change.

Ironically, many businesses in the world have in fact the same or very similar needs, some are even
communicating using interfaces that are similar or exact matches of other, unknown businesses, yet
the lack of context in the system blocks the capability of matching up these APIs, which leads to a
continuous reinvention of the wheel and perpetual need for human intervention to discover, convene
and integrate the communication protocols.

1.4.5 ∘ Semantics, The Meaning Of Things

Semantics,  the meaning of things,  what things  represent,  is  a  concept highly interlinked with the
thought process, the consciousness, of humans and human existence itself. As such, it is very hard or
even impossible to thoroughly define it outside this context, but it seems to have a lot to do with our
ability to operate on or based on things.

It can be argued, very simplistically speaking, that the meaning of things is in fact the totality of
actions that a person can autonomously perform with or based on those things, be that mechanical or
mental in nature. The autonomous term is highly important, because if the person, or any agent9 for
that  matter,  needs “guidance”  in  performing an action with  regards  to  a  specific thing or  cannot
perform any action with that thing, it means that the object in discussion has limited or no meaning to
him. These are very rear situations, because for almost anything that we pick from our reality there is
something that we can do with it, not necessarily mechanically. This is completely natural because
otherwise it would not be part of our reality, it would be meaningless to us the same way as atoms,
quarks and other subatomic elements are irrelevant to the vast majority of humans in the everyday life
and the same way as numbers are meaningless to the Pirahã.

If the meaning of objects to an agent stands in the activities that the agent can perform with these
objects, the meaning of activities would stand in the objects they affect together with the activities that
can be performed with these activities: equivalences, implications, triggers, etc. This blend of objects
and activities is what the current paper considers as being the Semantic Reality.

Under this assumption, the meaning of things, cannot be perceived as a stand alone, absolute, concept,
because it depends on the agent and it only makes sense in conjunction with it. One cannot ask what
the meaning of a rock is. The question itself is nonsensical. One should rather ask what the meaning of
a rock is to them. Depending on other factors too, like size, material, quality, one can hunt with a rock,
can injure oneself or someone else with it, one can use it in a construction, polish it into a decoration,
et cetera, a plethora of variations that trigger different potential actions or emotions and which have
the capability to enrich the connection between the person and the rock with meaning. 

But what does a rock mean to a computer? Absolutely nothing. The computer does not have any
capability to perceive or perform actions on, or because of a rock, and so we cannot talk about any
process of comprehending or understanding with regards to the computer and the rock. One could

9 An umbrella term covering entities that can perform activities in a voluntary or pseudo voluntary manner. The best
example for this are humans, but this concept is also starting to encompass objects like robots, computers, or other
complex machines that can operate on and with the surrounding environment.
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argue though that a computer can be destroyed by a rock, so there is a semantical connection between
the two, but this would be profoundly misleading. The semantical connection does not exist between
the  rock  and  the  computer.  This  semantical  connection  is  one,  between  the  conjunction  of  the
computer and the rock as object of the meaning, and the person that states the scenario as subject of
the meaning, not between the rock and the computer.

The semantic reality of computer applications reside in the code, as a mechanism for action and data
as  object  of  meaning,  on  which  the  pre-programmed  specific  actions  can  be  performed  on  an
autonomous  manner.  It  is  important  to  consider  this  semantic  reality  conservatively.  Performing
certain actions autonomously does not mean full autonomy. Computers will not start acting on their
own and possess free will, but there are many processes that can be automated, and that would provide
enormous benefits to the industry in terms of cost, quality and security.

example: 15,   Unit of measurement semantics

– both the concept of meter (m) and the concept of foot (ft) exist  and they are universally
accepted

– they are both distances or length (hence interchangeable) and that

– (m) = 0.3048 * (ft)

For example if units of measurement were to be considered universal primitive concepts, with terms
like “meter” (m) and “foot” (ft) being in the collective reality and there existed an equivalence formula
like in example: 15, a computer program can be written to find this correlation and provide (meter) to
an operation that requires (meter) but is being provided values in (foot)s. An inference path exists
between the two concepts and as such the aforementioned units and the associated activity represent a
semantically rich fragment of the application's reality. 

This may seem like very poor performance in human terms, but in terms of current programming
techniques this could be an enormous step forward. A great deal of the code an application needs,
deals with low level data validation, data integrity checks, consistency checks, as well as data access
policy enforcement. Collectively, these represent a highly critical aspect of applications because they
are  responsible  for  most  dangerous  bugs,  failures,  loss  of  information  through  data  hierarchy
corruption, and security breaches. Consequently great resources (time, work and money) are dedicated
to this aspect but even so, due to the enormous complexities associated, fast pace of changing needs
and often lack of sufficient expertise, the results fall short of the expectations.

1.4.6 ∘ Object Oriented. The All In One Model

In a paper that was to appear in the Encyclopedia of Microcomputers (Chenho Kung, 1991) defines
object oriented programming as:
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"The object-oriented (OO) paradigm is a new approach for software development. In this 
paradigm, the real world is viewed as consisting of autonomous, concurrent objects 
interacting with each other. Each object has its own states and behavior, resembling their 
counterparts in the real world."
quote: 1,     Chengo Kung, 1991

This  twenty  years  old  definition,  which  still  very  accurately  defines  the  modern  object  oriented
programming ideology, clearly emphasizes the technology's unique perspective towards software units:
as self contained objects, that have characteristics, state, and means to perform actions. One of the
principle paradigms of the technology, encapsulation, explains how these elements fit together creating
black box like items, which have very clearly defined interfaces to show to the public but which hide
inside all the inner workings, that are not essential to see when the objects are used. By doing so,
clutter  is  reduced,  making the code easy  to  navigate,  understand and used.  Other paradigms like
inheritance by ways of which objects can inherit capabilities and characteristics from more abstract
objects greatly facilitates the reuse of code and its portability. 

But  the  object  oriented  technology  is  not  at  all  concerned  with  meaning.  These  objects  that  are
supposed  to  mimic  the  real  world  objects,  have  in  fact  only  marginal  resemblance  to  their  real
counterparts. The paradigms of OO do not enforce at all any strictness with regards to reality but
rather only the principles of modeling code in a certain type of way, which greatly increases coding
efficiency.

example: 16,    Encapsulation of state and behavior in object oriented programming

Book{
String title;
String author;
Date chekOutDate;
int durationDays;
String borrower;
// -----
void chekOut(String borrower, int durationDays);
void checkIn();
String getTitle();
…

}

Library{
Book[] books;
// -----
void checkOut(Book book, String borrower, int durationDays);

}

The class Book in  example: 16 encapsulates functionalities and attributes of a library book and it
makes a lot of sense to endow it with the capability to check itself out from the library in the name of
a borrower and even to store within, the details of the borrowing. Of course, in the real world, books
don't check themselves out of the library, such a thing is not within the capabilities of a real book and
it would be severely counterproductive to store the details of the borrowing in the book itself, as they
would  be  unavailable  unless  one  actually  had  the  book,  which  is  not  the  case  when  one  lends
something. As such, it would make a lot more sense to endow the library with the capability to check
out books but if we think about it for a second, this is not real either. Both approaches are just ways to
abstract activities and group them so that they would be intuitive to use, portable and easy to reuse. It
is really at the subjective opinion of a developer to decide which method is optimal for the given
situation. 
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This is not to say that Object Oriented Programming and the object oriented model are not good, but
just as well, it is a fallacy to consider that this efficient model of programming is suitable for every
kind of information manipulation. Yet as pure object oriented programing languages are becoming
more and more frequent, the boundary between objects that “do stuff” and objects that “describe stuff”
has almost completely disappeared.

This blurring of the two aspects stems in the natural desire of developers to benefit from the various
efficiencies object oriented programming offers for certain situation. Objects that “do stuff”, active
object so to speak, perform their job by ways of methods, code encapsulated into their construction.
This code, which can add up from thousands to millions of lines of code in an application has been the
major  focus  of  attention  when  it  came  to  optimizing,  for  it  represents  the  vast  majority  of  the
development  effort.  As  such,  any  optimization  in  portability  or  re-usability  brought  considerable
reductions in cost. By contrast, objects that “describe stuff”10 represent only a tiny fraction of the code.
So small that we cannot even talk about optimizing this layer with regards to implementation time.

The problem with this approach is that lately portability of the types that “describe stuff” has become
more and more important and the subjectivity of the developers and client needs, that are inherently
embedded in these types by the OO model are in sharp contradiction with the need for their universal
acceptance.

Another enormous impediment in information portability and freedom that is inherently built into the
OO model is the way it models relations. The common practice in OO programing is to embed the
relation, be that [1 - n], or [m - n] into the construction of the type itself. While this may bring some
benefit  in  working  with  these  objects  from code portability  it  probably  represents  the  apogee  of
inflexibility with regards to information portability:

example: 17,   Relation representing books belonging to a library

Library{
...
List getBooks();
...

}

If any new relation needs to be added to the type definition hierarchy, it requires changing the type
itself,  which  in  the  best  case  requires  modification  of  at  least  one  type  at  source  code  level,
recompilation, redeploy and restart of the application. As such, a type can never acquire universal
acceptance because there will always be particular needs for particular relations, even if the type itself
is universally standard. Such particularity keep types in the constant and total chaos of subjectivity.

1.4.7 ∘ Comparison With The Relational Model

The way individual complex types are structured in the relational model is very similar to the object
oriented model with two the major differences. 

Object  oriented  model  allows  inheritance  of  properties  and  abstraction  of  types,  whereas  in  the
relational model all components of the structure are redefined. As such, the area of a circle as defined
in the “Circle” type has nothing to do with the area of a square as defined in the “Square” type.
Consequently, there is a lot of redundant terminology that can be confusing to a developer because the
human mind, will constantly try to associate the two, as they have common semantics.

10 In OO, representing only the part of the type that defines the attributes of the object and none of the methods. The
methods are part of what objects do.
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The second major difference that the relational model has relative to the OO model, is that it sees the
relations between types as a separate concept, unrelated to the types themselves. In fact it  doesn't
really take any sides between types and relations as both are considered relations. This characteristics
gives greater flexibility to the data model, because the addition of a relation, which can occur later on
in the use of the application, does not change the structure of the types. They can be added as needed
throughout the lifetime of the application. This flexibility and the simplicity of the model allowed for
extremely  good  standardization,  which  makes  the  relational  model  and  the  relational  databases
extremely successful to these days.

With object oriented development becoming more and more prevalent due to its efficiency of code
reuse, changing the minds of developers into thinking more are more in terms of objects,  there is a
rising confusion in the field of data manipulation. Storing data in one model and manipulating it in a
different one, especially when the difference between the two are significant, needs a lot of overhead
work. A separate layer needs to be created to transform back and forth the data structure as well as the
searching criteria, which sometimes can prove very difficult. Additionally, the difference in the way
the two models conceptually encode information inevitably gives rise to a lot of conceptual conflict as
well, and different developers see the transition between the two in different way.

To simplify this, some advocate the creation of object-oriented databases, which would do away with
the overhead of coding and the conflict of ideologies, because in the object model, both, members of
complex types (structures) and the relation are reusable via inheritance. By wrapping both members
and relations under the same umbrella, the object model, allow easy implementation of programming
operations like deep comparison, deep copy or deep deletion, operations that can potentially create a
lot of data inconsistency and programming overhead in relational systems which do not necessarily
enforce these dependencies.

But the subjectivity of structures associated with the object model and the rigidity created by wrapping
relations into the types have taken their toll on the standardization and portability of the model. Object
databases are by far less versatile and as such there are many different implementation that found their
way only into niche applications.

The legacy of both these major data models is that they originate in an era when applications were not
meant to communicate with each other. The vast majority of applications resided at most on a local
area network or a virtual private network serving one business or one cohesive group of consumers.
This meant that the abstraction of data, the pattern created to capture information into it's meaning
free  form  did  not  intersect  with  the  property  of  subjectivity.  It  was  as  if  individuals,  observed
information from their own particular points of view and little did it  matter that other individuals
observe the same information but from an alternate subjective angle. Information losses associated
with the abstraction of information could easily be factored in from the beginning. Because of this,
information, had that absolute character data has. The two, information and data, were conceptually
almost interchangeable as the abstractor was the same with the consumer. Whatever wasn't encoded
into the data, was in the head of that  who encoded it,  who in the end was also responsible with
decoding it. This simplification however can only exist under the premise of the lack of subjectivity. 

But not so long ago came a time when applications started to break the barrier of individualism and
transfer of information (not data) started to become more and more important in the information
industry. This however proved a very difficult nut to crack because the moment this need arose,  the
encoded information lost its absolute character and encoded information suddenly became what it
really is: data and not information. But the industry continued to treat it as if nothing had happened
and attempted to apply to information, everything that learned and developed for data.
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1.4.8 ∘ Web Services, The XML Promise

Shortly after the XML standard has been released, a plethora of communication related technologies
appeared that were based on it: XML RPC, XSD, WSDL, UDDI. There was great optimism following
the release around year 2000 and the industry envisioned a world in which computer to computer
communication would soon become commonplace enabled by such technologies. 

But  in  spite  of  their  effectiveness  in  structuring  information,  the  enormous  number  of  business
supporting  them and unprecedented  consensus  with  regards  to  the  direction  of  technology,  these
standards  failed  to  deliver  that  promise.  The  reason  why,  has  nothing  to  do  with  structure and
everything to do with how meaning is seen in the world of computation.

◊  X M L

The Extensible Markup Language (XML) appeared out of the necessity to be able to exchange richly
structured documents over the web, akin to HTML, which was too rigid for this purpose,  having
predefined tags and as such being limited to a certain kind of data. The general structure of an XML is
very similar to the HTML counterpart example: 18.

example: 18,   Person structured in an xml file

<Person>
<PID>pidvalue</PID>
<name>John Doe</name>
<address>

<street>Elm Street</street>
<number>1234567<number>
<country>Nowhere</country>

</address>
...

</Person>

As opposed to HTML, XML can encode virtually any kind of information, because the tags are not
standardized.  XML however,  was never meant to carry any semantics.  In an article,  A Technical
Introduction to XML (Walsh Norman, 1997) was writing:

“XML specifies neither semantics nor a tag set. In fact XML is really a meta-language for 
describing markup languages. In other words, XML provides a facility to define tags and 
the structural relationships between them. Since there's no predefined tag set, there can't be 
any preconceived semantics. All of the semantics of an XML document will either be 
defined by the applications that process them or by stylesheets.”
quote: 2,     Walsh Norman, 1997

Owing to this absolute freedom for structuring there is no way to tell what actually is encoded in the
XML itself. In an XML, the tag <name> does not mean anything; it could just as easily be <eman>11

or anything else. This meant that there was no way for two applications to exchange information this
way  unless  they  agreed  to  rigid  structures  by  ways  of  which  they  encoded  and  decoded  the
information. To put an end to the confusion and to allow a more general use to the XML, the XSD
standard was defined, which is in turn an XML structure meant to standardize definitions in XML
format.

11 Name written backwards
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◊  X S D

Published in 2001, the XML Schema Definition (SXD) is a schema language which allows for the
definition of restrictions in the structure of XML documents such that there could be some general
common ground in the definition of types during information interchange via the web. Being specially
thought up with type definition in perspective, the XSD standard also defines the basic data akin to
most programming languages: String, decimal, dateTime, time, float, double, etc. (19 total) and XML
schema elements that allow for construction of structured types, example: 19, like Person or Address
from example: 18.
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example: 19,   XSD schema example

<?xml version="1.0" encoding="utf-8"?> 
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xs:element name="Address"> 
<xs:complexType> 

<xs:sequence> 
<xs:element name="Recipient" type="xs:string" /> 
<xs:element name="House" type="xs:string" /> 
<xs:element name="Street" type="xs:string" /> 
<xs:element name="Town" type="xs:string" /> 
<xs:element name="County" type="xs:string" minOccurs="0" /> 
<xs:element name="PostCode" type="xs:string" /> 
<xs:element name="Country" minOccurs="0"> 

<xs:simpleType> 
<xs:restriction base="xs:string"> 

<xs:enumeration value="IN" /> 
<xs:enumeration value="DE" /> 
<xs:enumeration value="ES" /> 
<xs:enumeration value="UK" /> 
<xs:enumeration value="US" /> 

</xs:restriction> 
</xs:simpleType> 

</xs:element> 
</xs:sequence> 

</xs:complexType> 
</xs:element> 

</xs:schema>

Unfortunately this additional  layer  of structuring still  doesn't  bring types closer  to containing any
universally evident meaning. With all the effort that was put into it, the XSD only brought the global
data type definition to the point where all the programming languages already were, with the added
benefit that this time there were no programming language dependencies and the definition language is
universally accepted.

◊  X M L - R P C ,  W E B  S E R V I C E S  A N D  T H E  U D D I

XML – RPC stands for (XML encoded Remote Procedure Call) which is a way of invoking functions
(methods) in an application from a remote location. 

There are obvious complications with invoking methods remotely, the most obvious ones being that
the remote machine does not have access to local pointers, stack, memory, type definitions, and so on,
so an RPC mechanism is designed to encode all necessary information into a network message on the
consumer, transmit it to the provider, decode it, interpret it by matching it to a local call, obtain a
result if necessary, encode it and send it back to the consumer. These providers have become known
in the modern networking systems as Web Services, and are very similar to the concept of the object
in OO development, comprising a set of functions that can be invoked by potential consumers, but in
this case, over a network. 

Abstracting from the intricacies of the implementation of RPC systems it can be seen that together
with WSDL (Web Service Definition Language) it is in fact a standardized definition of the concept of
interface as understood by most object oriented developers (a definition of functions that must be
coded into all classes declaring / inheriting that interface). just as in the case of XSD the definition of
these  Web  Services  (objects  serving  over  the  web)  is  independent  of  any  specific  programming
language.
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This independence from programming languages of both type definition and interface definition gave
great  hope  to  the  IT  industry  with  regards  to  automating  communication  between  software
applications  (business  to  business  or  B2B).  The  UDDI  (Universal  Description  Discovery  and
Integration)  registry  was  supposed  to  contain  a  vast  collection  of  such  interfaces,  published  by
businesses,  and  as  such  all  businesses  could  potentially  interconnect  and  exchange  information,
example: 20.

example: 20,   Accommodation search automation

An application could consult a UDDI and automatically discover all applications that offer room for rent 
at “Destination XYZ”, and consult whether they conform to certain criteria: star category, price range,  
etc.

The reality proved different, in spite of unprecedented support from all major players in the industry.
By 2010 most of them were retracting support due to lack of interest and adoption and the concept of
UDDI was dead.

1.4.9 ∘ Why These Standards Fail To Deliver

The simple answer is, they did not. They delivered exactly what they were supposed to. They defined a
platform independent framework that technically allow any two software to invoke methods on each
other  and  exchange  data  based  on  a  common  definition.  It  was  the  expectations that  were
unreasonable.

The industry expected that creating a platform independent structuring infrastructure could solve the
communication problem by allowing the definition of common types. But the desire to do so was not
taken into consideration. The wide acceptance of these common definitions were impossible because
there is  no such thing as common definition.  There only is  a common framework to create these
definitions and these frameworks suffers from the same problem as the type system in each individual
programming language: the lack of computational semantics.

Being able to define data in a platform independent manner does not magically transform data into
information. It does allow the transfer of data over the Internet as opposed to having it locally but
beyond that, putting it into context, interpreting it, was still the job of the operator. No steps have
been made towards the preservation of meaning during the encoding process, meaning which could
potentially be transferred together with the data.

All these type systems concentrate on standardizing the way information is  represented,  not what
information is.  The primitive (most basic elements) are very basic representation systems that can
partially encode various computer primitive concepts like integer or boolean onto machine language.
This is  essential,  because ultimately information does need to be encoded, but not sufficient.  The
system jumps from these primitives directly to structures, the elements of which are either structures
themselves  or  primitives.  There  are  no  intermediary  types,  primitives  that  can  also  carry  some
meaning, not only representation. If a member of a structure is a “string” that structure cannot be
standardized,  because  a  string  can  be  anything,  and  anything  is  just  not  standard  in  terms  of
computational potential. As such, an application cannot test on its own, or more precisely, one cannot
build an application that can test in an automated manner what an input or output parameter is.

example: 20 might have seen a little misplaced, because hotel accommodation search and booking is
one of the very few niches  that  managed to standardize its  communication.  This  however,  is  not
because seamless communication exists, but because of an arduous and very difficult standardization
campaign. All hotels that conform to the standard must implement rigorous proprietary middlemen
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APIs that can make the connection between booking, hotel and the browser. If a hotel wants or needs
to conform to more than one middlemen (in order to reach more clients) the developers of the hotel's
application need to implement all APIs. There is no UDDI like system and even if it were it is still the
developer's  mind, that  needs to read the documentation,  see the types,  make the connection,  and
implement information exchange. There is no information in the applications, the information is only
with the developer or hotel personnel or consumer.

This lack of common semantics, the rigidity of the data model and the subjective perspectives of many
different groups of businesses resulted in the creation of many disparate type hierarchies that  are
essentially incompatible outside groups. If a concept / a property is added to a structure the entire
structure needs to be changed leading to continuous redefinition of the types and impossibility to
having a stable basis for communication. Changing these types means that types need to be backward
compatible, somebody needs to maintain a record of the types and their versions and at the same time
enforce their proper usage. Because such things are impractical, applications, usually sooner rather
than later, need to be updated to using the latest types or they become outdated and incompatible with
the rest of the applications in the market, leading to the breakdown of the communication system.

The inflexibility of this holistic model is a major impediment in the domain of communication, at
information  level,  within  software  applications.  The  massive  amount  of  work  that  needs  to  be
continuously  invested  means  not  only  extra  cost  in  development,  but  also  a  lot  of  superficial
implementation, countless bugs, incompatibilities and major security vulnerabilities.

1 .5  ∘  Semant i c  Web  And  RDF /OWL  Onto log ies

As a response to the lack of meaning in these API based communication systems, which was observed
quite early in the development of the Internet, a new standard started to emerge.

The Semantic Web was coined in 1999, around the same time as the B2B and is defined as:

“a web of data that can be processed directly and indirectly by machines.”
quote: 3,   Tim Berners-Lee

by the inventor of the World Wide Web, Tim Berners-Lee and it was / is suppose to revolutionize
information search over the Internet (hence the moniker Web 3.0). To achieve this, frameworks have
been created like RDF (resource description framework) and OWL (Web Ontology Language) that
can  be  used  to  create  semantically  charged  data that  can  be  published  over  the  web.  These  are
necessary because computers cannot process natural language for their content and searches are based
on keyword matching and different tricks which don't yield results as expected. Similarly to the B2B
promise,  the  Semantic  Web  promises  a  world  in  which  machines  can  automatically  process
information  on  the  web  and  return  meaningful  answers,  not  just  answers  matched  by  character
comparison.

Unfortunately,  the  structuring  trend  is  so  prevalent  in  the  IT  discipline  that  even  developers  of
semantic web, fall into the same trap of defining terms that are only humanly intelligible. Frameworks
like RDF and OWL are by nature the same structuring languages that allow definition of types and
type hierarchies (ontologies in this case), as seen in the case of XSD. The difference is, that in the
case of ontologies, the types are supposed to carry semantic charge because the model puts  some
emphasis on the terminology and the relation between elements.
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It will be shown later in the work how this semantic charge it is in fact impossible to achieve the way
the ontologies are constructed today.

The body of people, that create such ontologies, are responsible to embed these semantic information
into the ontology in such way that machines can automatically make use of it.  Unfortunately, the
misconception  seems  to  be  present,  that  terms  and  relations  alone,  actually  hold  the  semantics
associated with the object. Evidently, when humans look at these terms and relations they all make
sense, but they make sense in the observers intellect not necessarily within applications. In human
world, terminology is important not because it is semantic in itself, but because it links to us, to our
reality (objects, actions, et cetera), which in turn is semantic to us because we can operate with those
objects and relations. 

By analogy, given a specific ontology, the semantics will not lie in the terminology and definitions
listed there; that is only semantic to humans. It will lie in what applications are able to do with that
ontology in an autonomous manner. From this angle, this linked resource model is no better in terms
of machine semantics than the classical model, using the APIs, it is just different: it does not operate
on structures and primitive types, it operates on terms, objects, types and relations between them.

1.5.1 ∘ Ontology, The Linked Data API

Because today's information systems work predominantly with data, the process of transforming this
data into information lies in the programs themselves, which together with the end-user, are putting
data into context thus transforming it into information. This is adequate for many operations but in
some cases it would be useful if information systems would be capable of transforming at least part of
the  data  into  information  and  manipulate  that  information  into  creating  more  concise,  humanly
manageable results: A web search is very good such example, where the cause for the massive amount
of  inconclusive  responses  is  a  result  of  applications  treating  page  content  as  data  and  not  as
information. They can match text in the search, but they cannot put that text into context and so they
cannot give answers to questions but rather just statistical matching between texts.

Ontologies  are  frameworks  that  allow  information,  not  data,  to  be  transposed  into  computing
environment, in such ways that it is possible to perform an analytical information extraction process
instead of a simple statistical matching. To put it in perspective, the two representations:

example: 21

1. “John is Human” - data represented as a sequence of characters
2. “Is (John, Human)” - information stored as a proposition

In the first case a computer program is capable of finding occurrences of texts like “John” and can
respond whether the text can be found in the given source text or not, whereas in the second case, a
computer can actually observe a relation that exists between John and Human. As such, from the
standpoint of the “is” relation, the second structure is actually information, not only data.

In  the  world  of  computer  science,  ontologies,  are  information  packages  which  can  be used  by  a
computing system to perform context dependent operations. In this case, the context is the ontology
itself, and the information declaration is the data pool on which operations take place. To return to the
upper example, a very simplistic ontology for the proposition 2. would contain the definitions of:
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example: 22

1. Human – living human being
2. Is – a relation denoting inclusion in a class or set

As such, a data package that contains the word John and the relation Is (John, Human), could tell a
computer system that whatever “John” is (or whatever the character array [J, h, o, n] stands for), it is a
Human, within the context of the Ontology. This makes the ontology the context that gives the data in
the packet information character.

The Holy Grail behind the ontology is an ontology that is generic and complete enough to serve as
context for any data that can be extracted from the human world. If that were true, there could be a
computing  system that  could  answer  virtually  any  question  in  a  pertinent  way,  akin  to  artificial
intelligence,  rather  than  just  search  for  raw occurrences  of  sets  of  characters.  Unfortunately,  the
human existence is  so  complex that  all  present  ontologies  fail  either  the  generic or  the  complete
criteria and in most cases both. This gives way to opinions and trends to emerge the result of which is
many, many, ontologies in most cases conceptually overlapping.

1.5.2 ∘ Ontology, A Concrete Example

To highlight the resemblance of the Ontology and the API models, from the perspective of outcome
and utility, let's consider an example from an existing ontology.

FOAF (Friend of a friend) is an ontology defined on RDF and OWL which aims to describe people
and relations within the context of the Internet, on-line presence. It defines a hierarchy of types which
can be complex or simple and are connected between them via properties and relations:

example: 23,    Snipet from FOAF Ontotlogy

Class: foaf:Image
Class: foaf:OnlineAccount
Class: foaf:OnlineGamingAccount  (Subclass Of: Online Account)
...
Property: foaf:mbox_sha1sum
Property: foaf:msnChatID
Property: foaf:lastName
Property: foaf:account (Range: every value of this property is a Online Account)
...

The semantic charge, however, from a computer's point of view, is similar or identical in nature to
other classical APIs, modelled in XSD or UML (unified modeling language). This is not a problem of
RDF or OWL languages, but rather a problem born from the way the industry sees data modeling:
abstracting a slice of reality into a custom, proprietary model.

FOAF grabs a piece of reality, that of people and the web, disjoints it conceptually from all the rest of
reality and attempts to represent it in such way that applications can make sens of it without the aid of
humans. Applications that are specifically built  to interpret FOAF will  undoubtedly be capable of
interpreting FOAF and give their users relevant response within the realm of FOAF reality, but this is
no  different  that  any  other  application  implementing  any  other  API.  Aside  from that,  any  other
application that is not strictly designed to conform to the types defined in the FOAF ontology will be
incapable to interpret any result. Why this is, has to do with the reliance of the ontology on humans to
interpret it. There is no consistency in naming, real continuity between types and no link to a larger
reality  (ontology)  to  which  references  are  made  via  suggestive  naming  and  explanation
(documentation).
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The “OnlineGamingAccount” in example: 23 is a derivative of the “OnlineAccount”, which in turn is
a derivative of “Thing” in the FOAF ontology. While the text in the description of the these types
make complete sense to a person, from a computer's perspective it could be anything. In order for a
computer  to  be  capable  to  perform  any  operations  with  a  foaf:OnlineGamingAccount,  in  an
automated fashion, the computer has to have some operations defined that take it as input and some
mechanism that trigger an automated reaction. If it does not have such an operation, it should at least
be capable of doing something with foaf:OnlineAccount. If neither of these are implemented (hard
coded) to take these very types as input no operation can be performed because there is no other
computationally intelligible information related with the type. These are self contained types, they
either make sense on their own (operations exist) or they don't. They are completely disjoint from the
reality (the human reality) from where they originate.

A  person  on  the  other  hand  is  capable  to  derive  lots  of  information  from  the  simple  name
“OnlineGamingAccount”. Although the designation is merged into a single word distorting slightly the
meaning this way, it is sufficiently similar to “on-line gaming account” so that a person can deduce
that this is what the type is about. The person, can immediately draw the conclusion that it is:

• an account, something representing him or her or another person

• on-line, in the on-line world (Internet)

the upper two,  hint  towards a  plethora of  collateral  information:  people log in  with  these
account,  they  have  a  profile,  information  accumulates  into  these  accounts,  actions  can  be
performed with the information and so on....

• it has to do with gaming, as in play, fun, and so on and so forth...

None of these distinct concepts (account, on-line or gaming) are defined in the FOAF ontology. It is
either  an  foaf:OnlineGamingAccount,  an  foaf:OnlineAccount  or  nothing  at  all  and  as  such,  a
computer built around the foaf ontology cannot draw any additional information from an object of this
type. There is simply no reality behind these types within the ontology.

What  is  worse  is  that  the  ontology  is  organizationally  controlled:  The  concept
“foaf:OnlineGamingAccount” is the property of somebody. The term “xyz:OnlineGamingAccount”
could be the property of somebody else, who might chose (not that they will, but the possibility exists)
to define it in terms of carrots and potatoes rather than gaming and on-line. The example might be
exaggerated, but it is meant to show that such terminology has nothing to do with reality, or a reality.
They are proprietary terms used by particular organizations who presume that the entire world will
conform to the standard and thus enable seamless communication within that particular sector. The
very concept of Ontology is slightly misplaced as it implies knowledge about a slice of reality. In
human world an ontology is usually a small segregated part from the global reality, which is particular
to a group of people and it only emphasizing the particularities of that group of people within the
context of this global reality. In IT, ontologies are defined outside the context of this general reality,
which continues to exist only in the human world. This segregationist view is very akin to an API,
containing a proprietary type hierarchy that can be used for information interchange but only if the
ones doing the interchange are sufficiently aware of the context to recreate information from data,
because at the root that is what is being interchanged. For anybody else, putting reality together from
these separate ontologies will inevitably lead to confusion, double definitions, subjectivity, conflict of
interest and all the other problems of the classical APIs.
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Ontologies need to emerge naturally from custom needs for various groups of people and it is the
more basic, general world that needs to be coined. As long as the way of creating them stays as it
currently  is,  these  ontologies  cannot  bring  the  awaited  revolution  because  people  will  never  be
interested or be able to using it. For example, the specification describing the FOAF (Dan Brickley,
Libby Miller, 2010) is so long, that no human will be enticed to read and learn it just to be able to say
a few words about themselves in the new semantic web. It is many times longer than the semantic
meaning (dictionary definition) of the objects that it defines, and it represents only an insignificantly
tiny  fraction  of  the  knowledgeable  information  within  human reality.  If  all  knowledge would  be
standardized  like  this,  it  would  become  an  unreadable  document.  If  the  alternative  method  is
presumed, that an application will help the humans to create these files, then we have to assume that in
a  complete  Web  3.0  environment  humans  will  be  using  thousands  of  custom made  applications
designed particularly for each ontology that will exists out there, which is just as unreasonable.

In either case, it is not likely that the current approach will be able to yield any real results outside
small scale studies or strict lab conditions.

1.5.3 ∘ Upper Ontologies

Because the ontologies are the contexts that give data information character, the representation of data
must adhere to the ontology or it cannot be observed, even if the information stored within the data
would otherwise be sensible. To allow for interoperability between ontologies, the concept of upper
ontology was defined which  aims to connect ontologies and therefor allowing for translation between
definitions from one ontology to the other.

Suppose we have ontology O consisting of the terms from example: 22, and ontology O', defining the
same concept in a slightly different way, example: 24.

example: 24,

1. Homo Sapiens – living human being
2. Belongs To – a relation denoting inclusion in a class or set

The proposition Is(John, Human), defined in the context of Ontology O, would not make any sense
within the context of Ontology O'. The fact that the reader is capable of recognizing the similarity and
hence the value of truth of the proposition within the context of the O' ontology is result of the fact
that the reader possess a larger context (ontology) in which there exists an equivalence between the
terms defined in the two ontologies, but a computer simply cannot.

example: 25,     Concept equivalence

1. Equivalent To – denoting equivalence rule between concepts
2. Equivalent To(Belongs To, Is)  – concept equivalence definitions
3. Equivalent To(Homo Sapiens, Human)  – concept equivalence definitions

example:  25,  is  what  an  upper  ontology  (UO)  stands  for.  With  it in  place,  a  computing  system
operating within the context O and UO should be able to make sense of a piece of data defined in O'.

It is important to observe the power behind the concept of an upper ontology, in allowing the creation
of equivalence between data definitions. If there wasn't an upper ontology UO, in order to state the
same information under both O and O', we would have two distinct data sets, which would yield two
different information sets under two different ontologies. There would be no way to recognize that
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there is an equivalence between the two information. They would be segregated forever each in its own
context, but with the upper ontology in place, not only can the computer recognize information from a
different (foreign) ontology, it can also tell that the information is equivalent. 

1.5.4 ∘ The Ontology Maze

Unfortunately  the  complication  with  ontologies  does  not  end  with  the  appearance  of  the  upper
ontologies. The human knowledge system seems to be too complicated for any one upper ontology, or
the opinions on how to build them part, so instead of one, many upper ontology systems exist, each of
them  with  its  own  particular  knowledge  representation  and  knowledge  base.  Let  us  see  the
methodology of some of the most renowned ones briefly.

◊  C Y C

The Cyc Ontology is a proprietary ontology developed by Cycorp Inc. The Cyc ontology is claimed to
be “universal” meaning that it can accommodate any concept regardless of context through a three
layer ontology system “upper”,  “middle” and “lower”.  The upper layer contains the more generic,
broad and highly structural concepts, such as temporality, dimensionality, relationship types, etc. the
middle layer, which contains widely used concepts, generalities and the lower layer contains leaf level
knowledge, in other work specifics. Each level ties into the definitions from the higher level through
rules(An Introduction to the Syntax and Content of Cyci).

Each element is considered to be a Cyc constant and is defined as:

#$ConstantName
comment text in natural language, …

isa: a list of representative sets whose member #$ConstantName is
genls: a list of representative sets whose subset #$ConstantName is, if any*

* genls,  will only be specified for concepts that are collections denoted by their connection through an
isa chain to the concept #$Collection.

The  Knowledge, the facts, are represented in Cyc via the predicative logic concept, throught Cyc
#$Relations, like Predicates and Functions.

Predicates are logical relations that can be thought of as functions that return true or false, and their
definition contains the additional description of the parameters they accept. For instance in the case of
a binary relation:

#$mother: <Animal><FemaleAnimal>

which denotes that the predicate #$mother takes two parameters the first of which must be a member
of the #$Animal collection and the second that of #$FemaleAnimal collection. Just as in the case of
constants explanation is given in natural language to avoid confusion.

As an important side note is that the natural language explanation is not part of the Knowledge Base
as  a  computation  tool.  It  does  not  aid  the  computer  program working  with  Cyc,  but  rather  the
developer of the computer programs or that of the ontology.

Additionally, Cyc also defines functions, which are constructs that receive parameters, like in the case
of predicates and return results other than true or false:
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#$ FemaleFn: <OrganismClassificationType>
comment text in natural language, …

isa: #$CollectionDenotingFunction
arg1Genl: #$Animal
resultIsa: #$ExistingObjectType
arg1Genl: #$FemaleAnimal

The Cyc ontology is self referential similarly to mathematics. All constants and terminology are on
higher level definitions which in turn are rooted in the upper layer axiomatic definitions. It defines over
5,000,000  assertions  between  approximately  a  500,000  constants  (concepts)  out  of  which
approximately 26,000 predicate constructs(ResearchCyc).

◊  U M B E L

The Upper Mapping and Binding Exchange Layer (UMBEL), is a subset of the OpenCyc provided in
an RDF (Resource Definition Framework) Ontology and according to the creator it is designed to
facilitate content interoperability on the Internet.

UMBEL vocabulary is  structured around three root classes,  and 38 root properties. In addition it
employs external vocabularies such as RDF and SKOS. UMBEL definitions follow the pattern (Upper
Mapping and Binding Exchange Layer (UMBEL) Specification):

Class name - umbel:RefConcept
Description - Distinct subsets of broadly understood concepts ...
in-domain-of - umbel:isRelatedTo, skos:prefLabel, skos:altLabel, skos:hiddenLabel, 
skos:definition
in-range-of - umbel:isAbout, umbel:correspondsTo
Sub-class-of - skos:Concept

The  base  classes  consist  of  umbel:RefConcept,  umbel:SuperType  and  umbel:Qualifier,  and  the
properties:  umbel:correspondsTo,  umbel:isAbout,  umbel:isRelatedTo,  umbel:relatesToXXX  (31
variants like:  relatesToSubstance,  relatesToEarth,  relatesToHeavens,  …, relatesToFinanceEconomy,
…, etc.), umbel:isLike, umbel:hasMapping, umbel:hasCharacteristic, umbel:isCharacteristicOf, each
accompanied by definition and specific annotations.

The  Reference Concepts, are drawn from the OpenCyc librarary which consists of approximately
28,000 Concepts and are divided into 33 mostly disjointed Super Types.

UMBEL's hierarchy is similar to Cyc, but because it emphasize interconnection, it consists only of
taxonomy:  definition  of  the  classes  and  relationship  between  them.  UMBEL  does  not  contain
relationship  between  instances  (assertions)  as  it  is  not  a  knowledge  base  but  rather  a  reference
ontology meant to provide support for interconnecting disparate ontologies.

The in-domain-of and in-range-of sections list the properties, defined in some external ontologies, that
can be used to describe that subject concept and a continuous effort is being made to tie existing
ontologies into UMBEL.

◊  B F O

Basic  Formal  Ontology  is  a  different  ontology  maintained  by  IFOMIS (The Institute  for  Formal
Ontology and Medical Information Science) and it consists of a series of sub ontologies divided into 2
broad categories: continuant (SNAP) or snapshot ontologies encompassing a snapshot of ontologies
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describing concepts that endure through time (time invariant), and occurent (SPAN) encompassing
ontologies  describing  processes  that  have  a  time  dimensionality(SPATIAL  COGNITION  AND
COMPUTATION).

As  part  of  the  ontology,  BFO employs  Logic  Programming,  namely  predicative  logic,  to  define
connections between the concepts it defines. These connections (predicates) are also divided into the
two major categories: there exist SNAP predicates and SPAN predicates. As a major criteria is that
relations  never  span  across  the  both domains:  they  are  either  SNAP or  SPAN.  For  example  the
part(…) relation exist for both SNAP and SPAN but the parameters that they take will only be from
one category: a leg, is part of a person and childhood is part of life. BFO does not allow the leg to be
part of the life. 

As  a  second  baseline  differentiation,  BFO  divides  concepts  into  two  categories:  Universals  and
Particulars.  Universals stand  for  the  broad  categories  such  as  Types,  Species,  Classes,  and
Particulars stand for individual representatives of these. If Homo Sapiens is a Universal,  than an
individual  human  being  would  be  a  particular  (Ontology  for  the  Twenty  First  Century:  An
Introduction with Recommendations):
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➢ Continuant

➢ Independent continuant 

➢ Site 
➢ Object 
➢ Fiat part of object 
➢ Boundary of object 
➢ Aggregate of Object 

➢ Dependent continuant 

➢ Quality 
➢ Realizable entity 

➢ Function 
➢ Role 
➢ disposition 

➢ Spatial region 

➢ 3D (volume) 
➢ 2D (surface) 
➢ 1D (line) 
➢ 0D (point) 

➢ Occurrent

➢ Temporal region, 
➢ Spatio-temporal region 
➢ Processual entity 
➢ Process 

➢ Process Aggregate 
➢ Fiat part of Process 
➢ Processual context 
➢ Boundary of a process

BFO defines a total  of 36 classes connected vertically  via the  is_a relation.  Additionally to these
classes BFO also defines a series of primitive relations between these classes:

• Constituent: Entity ⨉ Ontology

• Part: Entity ⨉ Entity

• InhersIn: SnapDependent ⨉ Substantial

• TemporalLocation: SpanEntity ⨉ TimeRegion

• Exists-At: SnapEntity ⨉ TimeInstance

• TemporalIndex: Ontology ⨉ TimeRegion

• SpatialLocation: SnapEntity ⨉ SpaceRegion

• TemporalLocation: SpanEntity ⨉ SpacetimeRegion

• ParticipatesIn: Substantial ⨉ Processual
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1.5.5 ∘ Some Comparative Aspects

A  few  comparative  aspects  have  been  picked  which  may  be  key  in  the  easy  of  adoption
(understanding, development, extending) from both computational aspect and human perspective.

Cyc UMBEL BFO

Directionality Vertical Hierarchy, 
multiple ancestor 
permitted. Horizontal 
connections via functions 
& predicates

Strict vertical divergence 
via type hierarchy. 
Horizontal connections 
via properties

Strictly diverging vertical 
Hierarchy via Is_a relation. 
Horizontal connections between
certain predicates. (Domain 
constraints may apply)

Grammar Predicate Logic, 
Functional Programming

Predicate logic 
(relations)

Predicate logic (relations)

Constraints Very few. 3 layers, lower 
layers tie coherently into 
upper layers

Taxonomy only Conceptual differentiation 
between time dependent and 
time independent concepts, 
universal and particulars, 
dependent and independent.

Base 

Vocabulary

500K concepts, 26K 
relations

3 root classes & 38 
properties

36 Classes

Definitions 5M assertions 28000 concepts grouped 
in 33 mostly disjoint 
supertypes

36 Classes

Form of 
Definitions

Agglutinated Natural 
Language words (in 
CamelCase)

Agglutinated Natural 
Language words (in 
CamelCase)

Agglutinated Natural Language 
words (in CamelCase)

Language CycL, OWL RDF, OWL OWL

The widest adoption is enjoyed by BFO(Basic Formal Ontology Users)(UMBEL Projects), which it
can be seen, is the simplest most restrictive of all. Although grammatically the restrictions represent
limitations, from the human perspective they are easy to understand and potentially boost the capacity
of developers to build quality ontologies based upon it. It is flexibility versus adoptability: while 15K
relations give one the flexibility to connect concepts in an extremely complex manner it also pose an
enormous  obstacle  in  finding  the  appropriate  relations  for  reuse,  avoiding  double  definition  for
relations, and preserving consistency across the domain.

Specifically, terminology invention (see: 2.1.3 simplicity & Familiarity ), which is a characteristic of all
ontologies (both upper and lower) poses a great barrier in their adoption. The sheer volume of the
invented term, which range  from thousands  to  hundreds of  thousands,  makes  them impossible  to
remember and in some cases even impossible to found should a person even have the intention of
finding them.
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1.5.6 ∘ The Demotion Of Upper Ontologies

The use of upper ontology systems in binding disparate lower ontologies together is a commendable
effort that has the potential to improve interoperability in the domain of knowledge representation and
information manipulation. But in spite of the major efforts that have been put into their adoption
remains strictly in the boundaries of isolated projects. On the other hand, if the power of the semantic
web lies in the adoption of the concepts than perhaps a simpler system, which may not allow full
representation of human reality, could do more for the semantic web than the complex ones that claim
to be able to do so.

The moment dissensions entered into the world of upper ontologies and multiple variations of them
appeared, marks the moment of downgrading such ontologies to the rank of ontologies. Similarly as
Cyc has different layers so are these ontologies to a certain degree above a subset of other ontologies,
but  relative  to  other  so  called  upper  ontologies  they  are  in  fact  parallel  and  therefore  have  no
structuring power over them. Application designed for an upper ontology might be able to handle sub
ontologies, but they will not be able to explore ontologies on the same level.

As such it  is  really inappropriate of talking about an upper ontology in the same sense as reality
around us is relative to our understanding. Our reality is one, we can always count on it to be one, we
can measure against it because it is absolute12. It's existence does not depend on who observes it, only
the information collected from it changes. A true upper ontology should not depend on predefined
hierarchies, but rather only on universally acceptable truths. An upper ontology should be unique and
universally objective.

1 .6  ∘  Fra c tu red  Rea l i t i e s

The current mainstream approach in the creation of either APIs or Ontologies is for an organization to
take charge and create a set of types, terms, connections, anything involved in the specific definition
and then push it out to the community to use. As part of the contract, the organization gets to put the
collection of type, terms, etc. under its own brand and be the sole governor of the package (like
foaf:OnlineGamingAccount). But given the nature of information, it is both presumptuous and naïve
to believe that the industry will have the will or even the interest to simply concede to adopting such
API or Ontology, and for numerous good reasons:

Businesses  might  simply  not  like  the  fact  that  somebody  else  dictates  the  direction  of  an  API  /
Ontology because it is a major risk from a business standpoint. What if extra features are needed in
the future and the governing organization is not willing or is unable to include them. What if they will
start  charging for  it.  What  if  the descriptions become inaccessible due to network outages  at  the
governing organization, etc.

What if in the multitude of APIs / Ontologies a business simply does not find what it needs. In an
ontology based web 3.0 we have to assume that thousands of such ontologies will exist. Even if they
are all registered in a common library, even if we assume perfect harmony between such ontologies,
absolute discipline in their usage and total backward compatibility, it would still be a titanic effort to
find various concepts from various ontologies, putting them together, obeying the relations between
them and their limitations, perhaps even extending some with custom particularities and then keeping

12 Changing slowly enough that the change is not uncomfortable to adapt across across the lifespan of human
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track of them during the lifetime of the application. On the other hand is a lot less effort to just simply
redefine whatever one needs and add it back to the common repository, a process that contributes to
making the ontology landscape ever more fractured.

Suppose several  businesses do agree to use parts from such foreign API /  Ontology, for example
foaf:Person,  but  they  need  to  define  custom  ones  due  to  business  needs.  Presumably  they  will
implement  custom  versions  for  their  Person,  abc:Person,  bcd:Person,  etc:Person,  and  specify
foaf:Person as ancestor class. In this situation the model is generating an inevitable fracturing of the
computing reality with regards to the concept of the Person. 

In spite of the fact that abc:Person is in fact conceptually exactly the same as bcd:Person, only with
different sets of custom properties, the model does not regard them as such. They are part of two
different ontologies, and their only connection is that they both inherit foaf:Person, which conceptually
is  in  fact  also  exactly  the  same.  It  is  difficult  to  imagine  this  for  somebody  used  to  work  with
inheritance,  but  conceptually,  the  abc:Person  and  bcd:Person  with  respect  to  foaf:Person  are  not
derivative classes, the way Square and Circle are with respect to Geometric_Shape. But rather they are
different variations of the same class. It is the same concept from reality that is being modeled but it is
modeled so in an environment that spawns three separate concepts linked together with the relation of
inheritance. The single concept Person from human reality is transformed into computing reality into
three separate concepts fracturing the human reality behind the Person into three disparate or partially
disparate realities in the computing realm. Applications that  are built  on the abc ontology cannot
assume any other connection with the bcd:Person other than the fact that they have common ancestry
in foaf. In ontology language we can assert that abc:Person is same as13 bcd:Person, and vice versa,
but  then the owner of  abc needs to continuously monitor  the world of  ontologies  for  any future
ontology that may contain an equivalent version of the Person.

It is much more reasonable to conclude that there will be little discipline in using ontologies and a lot
of subjectivity when it comes to defining them. As a result, instead of a harmonious landscape of
interconnecting ontologies  we are likely  to  observe  ontologies  that  define weird  terminology,  that
redefine terms without referencing others, missing intermediate pieces and duplicate terminologies all
laid  out  in  an  impossibly  complicated  infrastructure  of  terms,  types  and  connections  which  has
nothing to do with the homogeneous reality that the model tries to represent.

The  tendency  can  already  be  observed  with  today's  handful  of  ontologies,  which  are  defined by
professional organizations that are not only specialized in the field of semantic web, they are actually
creating it.  For example both Friend of Friend and Dublin Core ontology define the term Image
(foaf:Image and dcmitype:Image) and the two are not the same. An application built on Dublin Core
will not be able to interpret14 an image defined in Friend of Friend in spite of the fact that they are in
fact  conceptually  identical,  a  phenomenon  that  is  extremely  detrimental  to  the  entire  concept  of
semantic web.

1.6.1 ∘ The Semantics Of Web 1.0, 2.0 & 3.0

The industry speaks about web 3.0 as the semantic web, where applications working on ontologies will
revolutionize information access based on the fact that ontologies are capable to capture a lot more,
computationally speaking, than simple document based data. Semantics however is a relative concept

13 For example “owl:sameAs” property that can be used to assert that two resource are in fact the about the same
individual.

14 Unless of course the application implements both ontologies, but that is detrimental in a different way.
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and only makes sense in conjunction with an agent,  to which whatever is  captured in the data is
meaningful. The content of HTML documents and that of image of the current web are fully semantic
to people.  People can interpret  and make sense of what is  in the documents but this is  not only
because they can interpret the language, it  is also because whatever is in the language, links to a
complex array of facts and activities in people's reality. Ontologies may be capable to capture more
complex aspects of human information while being interpretable by machine, but this, in itself, does
not mean that they will contain any semantics from the standpoint of computers and the world wide
web.

Web 1.0 and 2.0 are not regarded as semantic by the industry and HTML hardly qualifies as ontology
in the eye of any participant. This is because we regard web semantism from human perspective: how
can the web provide us knowledgeable information, by doing the analysis and the mining on its own. 

But if we are to look at this from computer perspective and not the human one, it is in fact HTML
that is the true ontology and not those defined by ontology definition frameworks. HTML is a language
that defines a remarkably simple ontology: that of documents (which may be texts, images or binary)
and the links between them. Because the semantics lie not in the representation,  but in what the
system can autonomously do with what is represented, this utterly simple landscape of images, texts,
links between images and texts, gave birth to an entire web of data, with trillions of interconnections.
This is because computers can actually do something with these concepts. Browsers, crawlers, search
engines, web services all rely on the simple common concept of interconnected documents and the
simple things that they do with these documents gave birth to the world wide web. The search result
may not be very semantical to the end user, nevertheless this, the web 1.0 and 2.0 are truly semantic to
computers.

Had there been many variations of images (such as the case with FOAF and Doublin Core), many
variations of text documents and many variations of connections between them, the world wide web
would  never  have  been  born.  It  is  important  to  observe,  that  different  variations do  not  refer  to
different representations: JPEG, PNG etc, but rather to something conceptually entirely different. This
is so ridiculous that it is even hard to comprehend that different concepts named Image might exist,
but from the computer's perspective this is exactly what it  is:  foaf:Image and dcmitype:Image are
apples and wales, so to speak. The concept “Image” defined in different ontologies / APIs represent
different realities to computers, that are incompatible in nature.

This  is  exactly  what  the  many  disparate  ontologies  of  today  represent:  a  web  of  proprietary
representations,  that  are  useless  on  a  global  scale  because  they  are  isolated  and  each  requires
specialized programs to do something with them. They will never be able to create a global network
the way HTML did. The more they are, the worst it is from the prospect of communication because
they create an ever more fractured reality  to computers,  and even if they are more equipped than
HTML in modeling complex relations, computers will not be able to do anything with it outside the
realm of the ontology that they implement and an isolated topology. In the best case this will result in
many different semantic webs, rather than a single world wide web 3.0.
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2∘S.P.IN.D.L. (Patent Pending)

There has been extensive work in knowledge representation in computer science and the discipline
exists for quite a while. Earliest works in KR have been done as early as 1959, much earlier than the
birth of the Internet itself. Since then, enormous efforts have been put into compiling large ontologies
(such as the millions of assertions in Cyc), to create upper ontologies, and knowledge representations
systems, but clearly something must be missing, because in all this time, none of the systems managed
to perform outside a niche environment akin to lab conditions and it does not look as if the industry is
ready to adopt any of them as unique standard, which is the only way a web 3.0 can develop. On the
contrary, it appears that more and more standards appear, as if the industry is still searching for that
perfect ontology.

The present work is such an attempt. Having observed the inadequacies enumerated in Chapter 1, will
try to solve the knowledge representation conundrum by eliminating them. S.P.IN.D.L., stands for
Semantic-Perspective  Information  Definition  Language,  and  it  is  an  knowledge  representation
formalism that takes a very different approach on how standardization is done, by taking inspiration in
how the human communication, and implicitly knowledge representation, evolved to accommodate the
particularities of their reality.

2 .1  ∘  Pa rad igms  O f  A  Web  3 .0

SPInDL is a knowledge representation language,  not an ontology, in fact,  SPInDL does not have
ontologies, at least not in the sense of what ontologies are in today's KR systems. 

2.1.1 ∘ Account For The Properties Of Information

Ontologies like FOAF define types / classes (example: 26), having properties and inheritance between
between classes, very much like the structures of the classical programming languages, an approach
that  has  been  shown  to  be  incompatible  with  the  subjectivity  and  incompleteness  property  of
information.

example: 26 FOAF Class

Class: foaf:Person
Subclass Of: foaf:Agent, foaf:Spatial Thing
Properties Include: plan, surname, geekcode, pastProject, lastName, family_name, publications, 
currentProject, familyName, firstName, workInfoHomepage, myersBriggs, schoolHomepage, img, 
workplaceHomepage, knows

When it comes to knowledge representation in human language, a class / type does not exist as a
prerequisite to store information about something. Types or classes or sets do come into existence as
part of an analyses process, when a collection of objects are analyzed based on the commonalities they
have, but otherwise they do not exist, because they would limit the capability to store information
about the objects in discussion.

On the same token, human language does not have a limited amount of relations that can be used to
describe objects, such as  properyOf, or  subclassOf. In reality, there may be an infinity of relations
between elements of reality, attempting define a set of relations that constructs the structures of the
reality will again limit the variations of knowledge that can be captured about the underlying reality.
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The way these ontologies are created is the exact opposite of how knowledge is represented in human
language. In human language structuring follows analyses, and it affects only the result of the analyses,
it does not have any effect on the source of information. In these ontologies, structuring (the creation
of classes and relations) precede the existence of the source of the information, in fact the source of
the information is a materialization of the structure itself, consequently it will limit the reality (the
source  of  information)  to  whatever  it  is  captured  in  the  structure.  No  additional  a-posteriori
information can exist about the source of the information within the realm of this ontology unless the
ontology itself is updated.

By contrast, SPInDLE has no definition types, only two meta-types and two meta-relations, but the
way  these  are  used  allow  for  an  infinite  number  of  relations,  even  future  relations,  without  the
introduction of new terminology or the need for modifying the language itself.

2.1.2 ∘ A Common Reality

As a direct consequence of the constructive approach of the ontologies', combined with the subjective
way industry participants handle information,  web 3.0 is  now the scene of an extremely complex
architecture of types and relations originating in different ontologies each trying to reconstruct human
reality  according  to  their  own  specific  view.  The  concept  namespace,  which  originates  in  the
development of the XML standard (a structuring standard) is ported into the ontology world and it is
being used to denote ownership of the ontology, basically it attributes ownership of the way reality is
constructed to a certain organization who took upon itself the responsibility to define it. The problem
stems from the word constructed (emphasized in  the previous sentence),  because there  would be
nothing wrong if the namespace were to define how organization xyz perceives reality, but this is not
the case.  To re-iterate the graveness of the problem that  this approach creates let  us consider an
example from Physics. 

Physics is  the discipline that  studies reality, different laws explain how different forces of nature
behave. Some models are more complete then others and so, they are able to observe different more
profound, aspects of reality. Such would be the example of Newton's law of gravity (newton:gravity)
and Einstein's law of gravity15 (einstein:gravity). The way ontologies are constructed now, gravity (a
force of nature) would be a direct result of Newton's respectively Einstein's law of gravity and not the
other way around, resulting in two different universes,  with two different gravitational  forces,  one
created by one of the models and one by the other. In this scenario there is no one gravity (the force of
nature) observed by two different models, but two forces of nature, created by two different models.
Some say that an upper ontology is needed which creates a new  book of rules where we can specify
relations  between  all  the  different  models  by  saying  something  like  newton:gravity  sameAs
einstein:gravity, but the concept itself is misguided. In fact newton:gravity and einstein:gravity are not
the same, they never even were intended to be the same. They may refer the same concept from
reality, but this is not what the “sameAs” relation states. The paradox rises from the fact that the
semantic  relation  sameAs is  being  used  in  the  wrong context.  SameAs  assumes  that  the  models
observe physical reality, but the model in which sameAs is used, the models in fact define physical
reality. The set of facts based on ontologies in web 3.0 are the web 3 reality from the perspective of
applications that operate with them, the same way as the totality of documents and their connections
on the Internet is the reality for a search engine, crawler, web browser suit. It might be more difficult

15 These laws are part of a larger models, but this is not relevant at this point
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to notice the similarity but foaf:Image and dcmitype:Image behave exactly in the same manner as
newton:gravity  and  einstein:gravity  and  an Internet  of  foaf:Images would  be an alien  reality  to  a
browser built for dcmitype:Images.

This upper ontology approach is not only used in a misinterpreted manner, but it is also impossible to
track within a large enough pool of ontologies, because it has a backwards nature. Suppose we have
newton:gravity, einstein:gravity, abc:gravity, bcd:gravity, etc:gravity as different interpretations of the
natural law of gravity. Then, organization ABC, defining abc:gravity, must constantly monitor this
upper ontology defined relations to make sure there exists  a  sameAs relation with all  the laws of
gravity that ever were and ever will be. One cannot rely on the transitivity of the  sameAs relation
because then one must also rely on the fact that any new organization XYZ contributing a new theory
to the same law of physics will  make sure to specify the  sameAs rules accordingly. The question
remains, up to how many variations of how many concepts can such a relation be tracked? Wouldn't it
be more simple to standardize gravity firsts, as (the law of nature), supreme, existing outside of any
definition and then relate this custom models of the law of gravity to  it, (newton:gravity describes
Gravity),   (einstein:gravity  describes  Gravity),  etc. Then  all  these  models  would  implicitly  have
something in common, a common concept, something akin to a reality.

***

Knowledge represented on human language follows this common reality model. Everything that is
within  a  language  has  a  correspondent  in  reality  of  humans:  objects,  time,  space,  perceptions,
emotions, activities, et cetera. Additionally the vast majority of reality is the same for all humans so
interestingly enough, even though many languages formed far apart from one another, they are still
largely  compatible,  given  very  few  exceptional  situations  (see  1.3 Common  Meaning  In  Human
Communication).
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Illustration  4 schematically  depicting  the  world  of  human communication,  emphasizes  how every
concept  from the common reality,  first  passes  through a subjective representation in  the brain  of
individuals but in order for communication to be possible, ends up again as a unique objective term in
another common realm, language. As opposed to computer reality, language does have the benefit of
having that objective reality against which it is constantly synchronized and as such, there can be any
number of languages, as long as they are synchronized against a common reality, translation between
them is possible.

In the computer reality, which lacks the fundamental common reality of humans, on account that
computers are unable to perceive it, we could substitute our reality with our language terminology. It
would no be a complete substitution, there would be many concepts that are contextually referred to in
language,  but  it  would  be  none  the  less  be  a  common  reality:  so  instead  of  a  common  reality,
computers would use a common terminology. Whilst in the human world the common concept goes to
the word in the brain which is connected to the concept in the brain which is an exact correspondent
of the actual concept that exists in the reality, Illustration 4, in the computer world, the convergence
will end at the “word”.

The benefit of this approach is that there is no need to construct or impose a standard. Language
already is a de facto standard present in every single culture, business, or any other group of people for
that matter.

This  would  be  a  fundamental  change with  regards  to  how information  is  looked at,  because  the
perspective changes from structure to concepts. The priority would not be any more how the data is
structured, what properties a particular ontology captures, such as the case of foaf:Person, but rather
what the data represents, in this case Person as defined in the language dictionary. The association
carries no structural information, therefore, there really is no need for defining particular kinds of
persons. As such,  foaf:Person and abc:Person would not be defining the concept,  Person, that would
already be defined in the language dictionary, but rather they would refer to the common concept
Person and would only elaborate on the particularities of their view.
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From a communication perspective this would have an enormous impact. There is no need for any
elaborate repository system (UDDI or upper ontology), because when communication occurs the term
would automatically carry the concept with it. Bob's and Alice's applications that both handle data
about the concept of Person under their own particular structure will be able to exchange information
without ever being synchronized via an API, upper ontology or similar repositories because they refer
a common reality, in which Person has a very specific meaning.

The very fact that the word itself carries the reference to the concept in the common reality is already
some degree of semantics. Imagine that Alice is browsing through a set of data Bob has shared with
her, and within it there is a list of  Persons, which Bob's application is designed to manipulate, but
Alice's computer is not. The fact that Alice's computer can rely on the fact that Bob's Person, is what
the dictionary says it to be, and the fact that Alice is fully aware of all the words in the dictionary
(even if most of them don't have any implementation associated), it can safely receive the information
from Bob's computer and present it to Alice. This would be totally impossible to do in the classical
way because a type in an API is not constrained to a concept of any kind, is a self contained entity. To
give an example, abc:Person does not necessarily have to capture information about Persons, it could
just  as  well  be  Oranges, if  the  organization  behind  the  type  would  not  care  to  give  their  types
suggestive names.

2.1.3 ∘ Simplicity & Familiarity 

The other trend that is enormously detrimental to web 3.0 is the terminology invention, briefly touched
at in chapter (1.5.5). Every single API and ontology that currently exists is dominated by this trend.
Types, properties and relations like the one in  example: 26, define their structure with compound
expressions  that  although  have  resemblance  with  dictionary  terms  they  preserve  only  partial
connection with these: pastProject, lastName, family_name, publications, currentProject, familyName,
firstName,  workInfoHomepage,  myersBriggs,  schoolHomepage,  img,  workplaceHomepage,  etc.  The
same can be observed in BFO upper ontology (SnapEntity, TimeInstance, TemporalIndex, Ontology,
TimeRegion,  SpatialLocation,  TemporalLocation),  UMBEL  (umbel:isAbout,  umbel:correspondsTo),
SKOS  (skos:prefLabel,  skos:altLabel,  skos:hiddenLabel,  skos:definition),  CycL  (#$relationAllExists
#$biologicalMother #$ChordataPhylum #$FemaleAnimal) and all the others.

It is important to observe that these terms are resemblant of words found in the language dictionary
and so they appear to refer concepts from our reality. This resemblance however, is highly misleading
because these expressions are in fact completely new terms within their own world, with definitions
describing their role within the ontology definition that may or my not look or be similar to the one in
the language dictionary term that looks similar. They couldn't even be any other way, because often
times these are root concepts within the ontology having no reference what so ever to other concepts
within the ontology that could have some explanatory nature within the ontology itself.
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example: 27, FOAF Person

<foaf:Person>
 <foaf:name>John Doe</foaf:name>
 <foaf:workplaceHomepage rdf:resource="http://www.john-does-homepage.com/"/>
</foaf:Person>

workplaceHomepage in FOAF is a completely new concept that has no other explanation that the
human readable one in the specification. There is not such thing in foaf as Workplace or Homepage.
Additionally the use of words is not regulated either. There is nothing in any of these standards that
dictates that a word which is identical to the one in the language dictionary must have exactly the same
meaning as in the dictionary, which is in fact the real world meaning of that word.

The new, invented word, is a root concept within the ontology and anybody who wants or needs to use
it needs to understand it first by reading the specifications.  WorkplaceHomepage is one that is quite
suggestive,  even  obvious,  having  a  very  good  choice  of  words,  but  they  are  many  in  different
ontologies that are much harder to understand:  isAbout, correspondsTo,  #$relationAllExists, etc. that
have  complex  ontology level  meanings  (the  way the  intersection sign  ⋂ has  a  special  role  in  set
theory). These are really impossible to understand unless the specification is studied and understood.

Collectively these ontology definition languages and ontologies generate tens of thousands of such new
expression. It is unreasonable to expect that any system could work with such an avalanche of terms
especially when these are not linked to an existing reality but rather generate one of their own. A
system is needed that relies extensively on the real world meaning of the words, one that is based in
the common reality of humans, only than will it be possible for it to become popular within large
groups of people and create the dynamics that will ultimately generate the web 3.0.

2.1.4 ∘ Openness

The human reality is huge, enormous, it has a vast amount of objects and possibly an infinite amount
of possible relations between those objects. Any system that is to cope with such a reality cannot rely
on  predefined  types  and  predefined  relations,  simply  because  it  is  impossible  to  account  for  all
possibilities  when  these  possibilities  have  no  limit  or  are  possibly  even  unknown at  the  time  of
definition (like future concepts / relations).

If we take a look at human language, we can observe that  it evolves in tandem with human needs,
human reality in a perfectly smooth, seamless manner.

2 .2  ∘  The  A rch i te c tu re  O f  S .P. I n .D . L

The SPInDL knowledge representation  language was  conceived  as  a  result  of  the  observation  of
deficiencies  of  current  KR  languages  /  ontologies  enumerated  in  the  previous  chapters,  and
consequently it delivers an alternative architecture that works around these deficiencies.

2.2.1 ∘ Binding With Language 

The first and probably most radical of all paradigms that SPInDL assumes, is the existence of the
Common Reality. SPInDL does not create a reality, but rather it describes one. As a consequence, any
object  or  fact  that  is  being  described with  SPInDL it  is  assumed to  predate  the description and
everything  that  is  not  described  it  is  not  assumed  to  be  inexistent  only  not  described.  Because
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computers do not have the possibility to observe the common reality we humans share, the SPInDL
common reality is considered to be, what has been identified in the paper as a direct binging of the
human reality, the English Dictionary.

example: 28,   Definition of the Person in the dictionary

Person
1. An individual human being

At this level, the level of reality, there are no namespaces allowed and no fabrication of new words is
allowed. Expressions that are multi word in English language, such as “first name” are allowed but
only in the very form they appear in language “first name”, not “firstName” or any other combination
that could suggest something different than the human expressions. To compensate for a lack or clarity
that  exists  virtually  in  every  language,  homonyms,  words  that  have  multiple  meanings,  the  first
meaning will be assumed that the dictionary defines. 

example: 29,   Meaning of Person in the dictionary that may create confusion

Person
...
2. An individual of specified character: a person of importance

The rest of the meanings will be substituted with appropriate expressions. In  example: 29, such an
expression could be “Public Figure”. The way these expressions are used however it is not defined. It
will be at the latitude of the community (groups that use the meaning) to negotiate the appropriate
expression when such moment occurs (see 2.12 Openness, Community driven model).

2 .3  ∘  Cases ,  The  Know ledge  Base

Given the direct  language binding,  the ontology of  SPInDL consists  in fact  of all  the words and
expressions defined in the English Language Dictionary having the very same meaning detailed there
with the assumption that people understand and relate to these words in order to connect them with
everyday concepts that  they have in their reality. Additionally to these concepts that  exists  in the
dictionary the ontology of SPInDL will contain the meta types,  Concepts & Specifics, and the  two
meta relations, Divergences & Correlations.

The knowledge, the actual facts that are captured about the concepts that exist in this outside reality,
specifics and the connections between them and other subjects, is called a case or a knowledge base.

definition: 1,     Case

A case is a subjective set of facts, as captured by a particular application at a given point in
time.

Implicitly every case will contain the SPInDL ontology, hence every concept from the dictionary and
so this will serve as a common system of reference to all applications that are based on SPInDL. The
rest of the information captured by a system is considered to be particular to that system.
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2 .4  ∘  Concep ts  &  Spec ifi cs

From an existential point of view the most general differentiation that we can create with regards to
the elements present in our reality is  whether they are touchable actual  material  things or on the
contrary, things that cannot be touched but nonetheless influence our existence. Based on this rule we
can  categorize  these  elements  as  Concepts  (immaterial,  untouchable)  elements  and  as  Specifics
(material, touchable) or in other words concrete manifestations of the concepts.

definition: 2,     Concept

Concepts are terminologies for stand alone facts, objects, phenomenons, etc, from reality in
a way that humans consider them as distinct from all the other facts, objects, etc, from 
reality, they assign them individual identification (name) and definition.

The notation for  the  concept will  be  the UTF8 representation  of  the  word in  the  dictionary  that
represent the concept in their base form: Person, Elephant, Create, Be, Run, Time, Happiness, Future,
Past, etc.

definition: 3,     Specifics

Specifics are materializations of concepts. Particular instances of a Concept.

The notation for a  specific will be that of the concept of which the specific is a materialization of,
followed by a unique reference in parenthesis: Concept(x). In this case, the x in the parenthesis must be
a specific that can uniquely identify the given specific within the case.

Not every concept can have instances. For example “one” (1) is a instance of the Number concept, A
specific Person (myself for instance) is a materialization of the Person concept, a specific rock of the
Rock concept and so on. These concepts can be called suggestively “Material Concepts”. On the other
hand,  concepts  like  “tall”,  “sad”,  “fast”,  “run”,  “dig”,  “future”,  “past”  and  many  more  have  no
materialization, they are “Abstract Concepts”.

SPInDL does not make a differentiation between abstract and material concepts. Within a particular
case, all concepts are considered to be abstract until they have a materialization, at which point they
become material. It is not however regulated whether a concept can or cannot have a materialization.
Human reality is very complex and even seemingly immaterial concepts can have materializations on
rare occasions. Take “time” for instance: it is a highly intangible concept which although present in our
everyday life it is mostly handled as an abstract concept. Even so, we do occasional consider specific
periods of time and refer to them as “the time of something”, like (“the time of Picasso”). This is not
an isolated case, the infinitely complex human reality has many such example and as such it is better
for any knowledge representation system to remain open. It will remain at the latitude of the program
whether it will allow materialization of a concept or not.

***

A small note is warranted on the concept of specifics within a case. In everyday life when we have
specifics in discussion we constantly adjust context in order to easily avoid confusion about the objects
that we discuss, therefore we are tempted to talk about specifics using a characteristic (property) of it.
This is especially valid when we consider universally unique identification properties, such as the case
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of things that are regularly stored as data (people's personal information, car information, etc). But for
most objects in reality there is no such thing as an absolute identification property. An object is usually
identified (in a communication) with several traits: “The pine tree that grows in front of John's house”,
that together are sufficiently unique within the give context. Nevertheless, inside our brain we have a
very specific, absolute reference about all objects that matter to us. When we think to ourselves, inside
our heads, there is no doubt about the particular instance we refer to. We need no such description to
identify which pine tree we are talking about. References within the cases should take this aspect into
consideration and use internal pointers for all specifics which are separate from all the properties, facts
that are recorded about the given specific.  

2 .5  ∘  D ive rgences  &  Co r re l a t i ons

The Achilles hill of every modeling language are the relations. In human reality there are countless
relations that can be set up between concepts and specifics (instances of concepts) and creating an a
priori list of relations to encompass them all is simply impossible. The attempt to do so resulted in the
biggest  and  most  complex  part  of  the  terminology  invention  in  current  ontology  languages:
“parentOf”, “memberOf”, “derivesFrom”, “superclassOf”, “propertyOf”, and so on.

example: 30

firstName › porpetyOf › Person

The result is both highly complex and limiting in terms of how many connections can be captured,
resulting  in  complex  yet  insufficient,  impossible  to  customize data  structures  that  are locked into
ontologies and depend heavily on the definitions the ontologies themselves define. Any new kind of
relation that may arise in the future, needs modification of the ontology and introduction of a new
definition in order to capture the relation.

Another  problem is  that  the  relations  are  static  in  nature.  The  relations  cannot  capture  in  their
definition specifics that are part of a Case.  Person(x) is part of a particular knowledge base, a  Case,
which is a manifestation of an ontology. The type Person as part of the ontology and all other types
and relations must preexist any manifestation of Person, in this case Person(x). As such, Person(x)
cannot be part of the definition chain of a relation.

It is important to mention that the concept of relation, just like the concept of type is in fact a result of
classification,  structuring,  the process  of creation of  types.  While  this  may be important from an
analytical  point  of  view,  it  has  been  shown  int  the  previous  chapters  that  from the  information
capturing point of view, this is detrimental. For this reason, SPInDL will avoid the use of relations
altogether at the language definition level in order to allow for any possible connection between two
subjects.

***

SPInDL introduces only two meta relation as part of the language (the divergence and the correlation).
It is appropriate to call them meta relations because they are very low level containing no case specific
semantics. Together with the dictionary and the meta types “Concepts” and “Specifics”, these two
meta relations form the entire SPInDL ontology.
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definition: 4,     The divergence

The divergence, p(S), denoted graphically by (›) is the coupling which defines the particular
angle through which the connection from a subject's perspective is connected with another 
subject's perspective.

The notation p(S) means that the subject S is seen through the perspective of subject p.

When we try to describe a situation, a case, in reality we analyze subjects (specifics and concepts)
from within the context of other specifics or concepts. Everything in our world is a concept, something
from  the  reality  around  us,  a  feeling,  a  state,  a  time,  the  self,  etc.  and  the  observed  fact  is  a
combination of a subset of these concepts.

example: 31,     example of a fact

John is fast.

In example: 31 we state that a specific person is fast. When we use the word John we refer to a very
specific Person. The context we use this word in implies that everybody present in the conversation
(any consumer of information) has a special memory location where the specific person John, or more
precisely the reference to him,  resides.  As such,  John (which in  this  case is  the commonly used
reference to this particular memory location) is a specific from reality. The other subject used in the
sentence is the concept of being. Being, referred to by the word is, is an abstract concept which has a
very specific meaning that everybody in the audience understands. Fast, is yet another similar concept
that implicitly brings with it the hidden concept (not appearing as a stand alone word in the sentence
but rather just implied by the word fast), speed.

The object16 of the analyses is John and the trait observed that characterizes John is the speed that 
describes its being.

example: 32,     Perspective John is observed from

John ‹ being ‹ speed

example: 32 illustrates how John, the specific, is observed from the perspective of the being concept,
speed(being(John)), which in turn is observed from the perspective of the concept of speed and thus
creating a particular perspective from which John is viewed in the context of the stated fact.

example: 33,    Correlation of John with the concept of fast

John ‹ being ‹ speed ⇢ fast

The conclusion of the analyses, the fact, states that viewed from this particular perspective John is
connected to the concept of  Fast, which is another well determined concept in people's view. The
relative aspect of the fastness at this point is not necessarily relevant, because it is not captured in the
case, but rather it is considered as part of the greater context in which the case takes place. 

example: 34,    Correlation of John with the concept of fast

John ‹ being ‹ speed ⇢ relative › fast

If we were to be more specific about the fact that there is a relative aspect to John being fast, that
would  mean  that  we  are  looking  at  the  concept  of  fast,  from  a  particular  perspective,  that  of
relativeness, rather than the absolute view as depicted in the  example: 33. So in this case “John is
relatively fast.”, example: 34.

16 The  sentence  is  not  analyzed  based  on  the  parts  of  the  sentence  (subject,  predicate,  etc.)  but  rather  from  an
informational perspective.
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definition: 5,     The Correlation

The correlation, denoted ( ), is the coupling which connects two particular perspectives of⇢
two subjects.

In the causal representations of the facts, the correlations will be replaced by a simple coma, since
every fact contains a single correlation and the positions of the perspectives in the fact will give the
directionality of the correlation.

Both, the  divergence and the  correlation are directed meta relations,  because both have a sens of
directionality, causality. The correlation in the examples above shows, that although the connection
affects both, it  is  John that is connected to the concept of  Fast and not vice versa. Similarly, the
divergence meta relation emphasizes the perspective from which a subject is being analyzed from. It
can refer an absolute subject or a perspective of it, generating an even more particular point of view.

definition: 6,     The Perspective

The Concept or Specific that sits at the starting point of the divergence shall be termed, 
perspective.

The actual relation, if we can talk about it in the same way as in the case of ontologies, would be the
complete path,  from  John to  Fast, in  example:  34,  and contains elements from both the SPInDL
ontology (language elements plus the dictionary) and the particular case in discussion. However, these
complete paths resemble more facts than particular types of relations.

definition: 7,     Fact

The full path from one subject to another via the divergences and perspectives, and 
connected by the correlation is termed as a fact, denoted F(p1, p2).

Every fact will contain a single  correlation and any number of divergences necessary to generate the
particular  perspective  the  fact  needs  to  state,  F(pn(pn-1(...(p1(p0(S1))))), qm(qm-1(...(q1(q0(S2)))))).  As
such, the fact is not part of the ontology but rather the case and the way these facts are formed they
allow for the development of any number of facts between the subjects of the case and within the
bigger context of the ontology.

Illustration 5 depicts a more complex case, in which a cat set on a cactus in the past, felt pain and will
not sit on that cactus or any other cactus every again.
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An important aspect of the knowledge capturing process is observable here: in SPInDL, the role of
perspective can be not only played by a concept, but it can also be a taken by a specific. The fact that
the  Cat is correlated with  Pain through the perspective of  Cactus(y), in the classic ontology model
would have to be provided by a parametrized relation, the definition of which would contain a great
deal of complex assumptions. This would crowed the ontology with a lot of definitions that are difficult
to  track.  SPInDL  on  the  other  hand  solves  the  communication  of  the  fact  with  a  very  simple
construction.

In such cases when the perspective is itself part of a chain in another perspective, specifics would meet
this  criteria  too,  a notation artifice can be employed to avoid the awkwardness  and confusion of
opening and closing parenthesis:

pn(pn-1(...(p1,3(p1,2 (p1,1 (p1)) | p0(S1)))), instead of
pn(pn-1(...(p1,3(p1,2 (p1,1 (p1)))(p0(S1))))

In essence, the “)(“ parenthesis combination is eliminated and it is replaced by a vertical bar resulting
in a perspective that has a continuation but with a single imbrication chain.

***

It is important to mention that information does not have an absolute character. The same information
can be conveyed in many other forms, using different concepts and it is ultimately our ability to find
pattern in the use of these context that gives sense to the information captured.

 

2 .6  ∘  Rep resen ta t i ona l  Concep ts  ( Pr im i t i ves )

Every  system that  is  meant  to  hold  information  needs  at  the  base  some means  by  which  it  can
represent it, within the designated medium. In human reality we use spoken words, written words,
sounds recordings, pictures, movies, etc. In computer science, all data is encoded in binary or series of
bytes (on a slightly upper level). If we look at it from an even higher level of abstraction these byte
arrays can contain data stored in there using an algorithm. The algorithm is them used to restore the
data and allow information to be extracted. The extraction of information will be performed by the
entity capable to interpret the data. So from an data storing point of view, ultimately all information
will end up in bytes, but from a conceptual point of view it is more beneficial to look at the data at the
level where it is intelligible to the information consumer. Take for example a PNG (portable network
graphics) encoded photo. While it too will end up as a sequence of bytes in a file, to a person this is
really  not  relevant.  The person  will  use  an application  to  store  it  there  and  to  restore  it  into  its
photograph form to be able to observe it on the screen. Any other intermediate form is irrelevant. The
photo cannot be decomposed into smaller parts while maintaining information integrity.

example: 35,    Primitives

These self contained material concepts, the specifics of which carry with them atomic 
representations of information uniquely discernible from all other specifics are called 
Primitives.
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Earlier in this document we already used a different representation system, the UTF8 (2.4 Concepts &
Specifics), which is a system of encoding written words for many languages. This is necessary because
concepts need to be referred to and it is possible because every concept is in fact a Specific Concept17.

So  Happiness can  be  represented  as  Concept(happiness),  where  the  word,  the  UTF8  character
sequence [h, a, p, p, i, n, e, s, s], uniquely identifies the Happiness concept. Since every word in the
dictionary  is  a  concept  and  the  dictionary  is  in  fact  the  predefined  ontology,  the  simplification
convention can be made to eliminate the Concept(happiness) notation for concepts and use it as simply
Happiness.  For  other  specifics  that  have  character  representations  the  notation  is  necessary,
Password(abc123), because in this case the specific password is not part of the ontology, it is part of a
particular case in which we recognize the existence of the specific password identified as abc123.

We can see that in order to be able to represent any kind of information, the bottom most subject will
always have to be a representational primitive.

example: 36,     The place of primitives in every factored

Cat(ref1) ‹ like ‹ negative ⇢ Pain
Cat(ref1) ⇢ Name(UTF8(kitty))
Cat(ref1) ‹ eat ‹ past ⇢ Cactus(ref2)
Cat(ref1) ‹ sit ‹ past ⇢ Cactus(ref2)

Where Pain for instance is a simplification of the Concept(UTF8(Pain)), and so on.

SPInDL only enforces the existence of the following primitives:

• UTF8: Text, everything that in human language is represented as written text.

• Numeric: Real numbers, everything that humans represent as numbers

• Time point: A formatted text representing a date and a time

• Binary: everything that is primitive but cannot be captured as one of the above mentioned

• Reference: a primitive that is used as a placeholder for any specific that is not a primitive

Other primitive representations can exist, like text patterns, PNG, JPG, WAV, etc. These primitives
however are not regulated, implementors are free to use any form of encoding they seem fit to create
their cases: for example Meter(123) vs.  Meter(one hundred and twenty three) as long the system can
represent them. The only thing enforced by SPInDL with regards to new primitives  is  that  if  an
international standard, or a sufficiently widespread term, does exist for the primitive (such as the case
the mentioned PNG, JPG) the primitive should bear this standard name and conversely, if it does bear
the standard name PNG, then it has to conform to the nominated standard.

2 .7  ∘  Prope r t i e s  O f   SP InD L  Cons t ruc t s

SPInDL  represents  information  as  facts:  causal  relations  between  concepts  and  instances,  but  it
replaces the custom relations with correlated perspectives, dynamic constructs, concepts and specifics
thus allowing for uncapped combination of correlations between subjects.

17 A specific of the Concept concept.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –



S.P.IN.D.L. (Patent pending) 53

2.7.1 ∘ The Vanishing Of Detail

Perspectives are obtained by diverging a subject using a concept or a specific thus creating a more
detailed  perspective  to  this  subject  or  some  perspective  of  it.  In  this  latter  case,  the  diverged
perspective becomes subject to the newly created perspective. Conceptually speaking, each perspective
is in fact a particular view of the subject it diverges from, or looking at it inversely each subject is a
less detailed view of all perspectives diverging from it.

We will note this relation where the details are vanishing cascadingly with the (⇒) symbol:

pn(pn-1(...(p1(p0(S)))) ⇒ pn-1(...(p1(p0(S))), and we interpret this: if subject S is being 
observed from perspective pn, then subject S is also being observed from the perspective pn-1,
where pn is a perspective of the subject viewed for the perspective of pn-1.

This property of the perspectives also extends onto the facts, a big part of the construction of which,
are the perspectives. To exemplify, let us consider the case described in Illustration 5.

example: 37,    Correlations from Illustration 5

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)

In the case described in Illustration 5 we can see that there are two correlations between cat(x) and
cactus(y), listed in example: 37. Both correlations connect cat(x) from the perspective of sitting, one
from the further diverged perspective of past one from the future.

example: 38,    More generic correlations from Illustration 5

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)

example: 39,    Process of correlations diverging, from Illustration 5

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)

example: 40,    Process of correlations diverging even more, from Illustration 5

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)

Conceptually speaking the divergence of perspectives means that we are describing a case in ever
more detail by capturing these details by applying different perspectives. If we erase the perspectives,
like in example: 38, all that remains to be known is that there exists a correlation between cat(x) and
cactus(y). The two correlations, 1 and 2, become identical. Similarly, if we erase the divergence down
from the sit concept, example: 39, the two correlations continue to remain identical but at this stage we
know  more  details  about  the  correlation,  more  precisely  the  fact,  that  cat(x)  and  cactus(y)  are
correlated via the perspective of the sitting activity. It is not known whether this happened in the past,
or will happen in the future, or it could be an entirely different perspective, the fact of the matter is
that details are missing from the information. Digging even deeper,  example: 40, we now know that
cat is connected through the perspective of sitting, both in the past and in the future. At this point the
two facts are not identical any more, because the perspectives diverge sufficiently that they convey
different information. As such, we can enunciate the property of facts that the existence of a particular
fact implies the existence of the more generic fact from the same line of perspective:
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If the fact F(pn(pn-1(...(p1(p0(S1))))), qm(qm-1(...(q1(q0(S2)))))) exists than the fact F1(pn(pn-1(...
(p1(p0(S1))))), qm-1(...(q1(q0(S2))))) also exists, and so does F2(pn-1(...(p1(p0(S1)))), qm-1(...
(q1(q0(S2))))) and every more generic fact down to completely generic fact Fm,n(S1, S2).

A very important aspect of SPInDL comes into view at this point. If we take a look back to example:
37 we can observe that the last perspective in the second fact is a negation, as in, the cat(x) will never
again  sit  on  cactus(y).  This  may  seem like  a  conflict  because  then  the  negative  fact  implies  the
existence of the fact that lacks the negative in its chain of perspectives, example: 40 second fact. This
however is not the case. SPInDL does not handle logical operations. It is a description language  and
correlations do not carry values of truth within them, they only describes the correlations observed /
known. SPInDL operates on the open world assumption, so a given correlation, does not mean that
every fact that starts from a given perspective exists, but rather it states that there exist at least one fact
from that given perspective, but that  fact can have any number of unknown details.  In the above
correlation, the negation is a detail.

example: 41,    Conflicting correlations

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)
3. Cat(x) ‹ sit ‹ future ‹ positive ⇢ Cactus(y)

The  case  could  very  well  add  another  fact,  example:  41 third  correlation,  which  from a  logical
standpoint is a contradiction of the second correlation. This would be perfectly legal, as this logical
aspect is not handled.  SPInDL operates just like the human language. It allows for description of
facts, but the language itself does not regulate the consistency of what is being represented. Sentences
can contain nonsensical information, paradoxes, contradictions, or valid information. It is the duty of
an analyses tool, built  upon rules like  Logic,  that can analyze and decide whether the information
represented is valid or not.

2.7.2 ∘ The Specifics And The Primitives

In the context of  detail vanishing, the first name John,  First Name(John)) or more precisely,  First
Name(UTF8(John))), exemplifies yet another characteristics of SPInDL: 

The concept of which a specific is a specific of, is in turn a particular perspective of the 
root subject primitive. 

example: 42,    Primitive viewed as specifics of different concepts

First Name(UTF8(Jasmine))
Flower(UTF8(Jasmine))

The  concept  First  Name,  is  a  particular  perspective  of  the  primitive  text  UTF8(Jasmine).  This
particular primitive is a single one but it can be looked at from the perspective of both First Name or
Flower, example: 42.

The  same  can  be  said  for  non  primitive  specifics,  those  that  are  represented  by  a  reference
placeholder. 
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example: 43,     Reference viewed as specifics of different concepts

1. Person(Refx)
2. Individual(Refx)
3. Human Being(Refx)
4. Woman(Refx)
5. Female(Refx)
6. Mother(Refx)
7. Grandmother(Refx)
8. …
9. Plant(Refx)

A Person is a very complex concept. A specific person cannot be universally identified in a unique
manner by one of its traits therefore a system using SPInDL KR will use an internal reference as a
placeholder, and all connections to the specific will be handled through that placeholder. In SPInDL,
the concept is a particular perspective, as such, the given reference can be viewed from any number of
concepts. In example: 43, the specific that we know of and refer to by Refx, is successively considered
as a specific of numerous concepts.

Again, it is important to mention that SPInDL does not impose validation on the correctness of the
information represented. Entry 9 in example: 43 is highly unlikely to be a consistent way to reference
Refx, but it nonetheless permitted by the language.

2 .8  ∘  Bas i c  Know ledge  Opera t i ons

2.8.1 ∘ Perspective Equivalences

In human language there are many words that denote not a single concepts but rather the combination
of various concepts. Additionally when sentences are formed, different terminations or forms of a
word are used to express composed concepts, like possession, time, place, etc., combinations that in
SPInDL are expressed by perspectives. Because these word combinations or derivations will exist in
the language dictionary and hence people will be tempted to use them, we introduce the perspective
equivalence operation,  which will  allow such altered words or concepts to take on more complex
perspective but still remain compatible with the ontology:

definition: 8,     Perspective equivalence

The equivalence, denoted with the symbol “=” expresses that the perspectives at the ends of 
the symbol are equivalent from information conveying perspective and hence are 
interchangeable in any construction p1 = p2, or in a more complex case px = pn(pn-1(...
(p1(p0)))).

example: 44,    A case containing perspective equivalence

1. sat =  sit ‹ past
2. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
3. Cat(x) ‹ sat ⇢ Cactus(y)

In example: 44 because of the definition sat = past(sit), we no longer need to express the perspective
in a cascading manner Past(Sit(Cat(x))), point 2, rather we can use the simplified form Sat(Cat(x)), like
in point 3. Due to the equivalence,  however,  the perspective chain is preserved and any analytics
software can recognize the presence of concepts in the chain.
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2.8.2 ∘ The Concept Definition

A special  case of  perspective equivalence is  the concept definition.  In natural  language,  we often
observe concepts defined with the aid of other concepts.  

example: 45,     Concept definitions

1. Midnight = Hour(24)
2. Fortnight = Count(2 | Week)
3. Adult = Full(Growth)

Not all concepts have definitions in other concepts so the ability to be expressed by other concepts is 
not required by SPInDL. It is nevertheless useful because many words in the human language are 
specifically designed to express specific aspects of certain concepts and such expressions are likely to 
be used by certain groups of people. Being able to express the equivalence in such cases where this 
exists reduces the volume of concepts expressed and covers the variations of the expressions for 
concepts making knowledge representation more portable. 

2.8.3 ∘ The Concept Implication

Similarly, natural language contains a lot of terms that, although are not exact equivalent of other
concepts, imply the existence of certain concepts, example: 46.

example: 46,     Concept implications

1. Woman  Feminine(Gender(Human))→
2. Woman  Adult→
3. Interstate  State(Connect(Road))→

For these cases, it is useful to have an operation to specify such implications. Denoted with an arrow
(→), the implication means that the concept on the left of the sign, determines the concept on the right
of the sign, a relation that is not reciprocal, however. As shown in example: 46 (1 & 2), the Woman
concept implies that we are talking about a human being which from a gender perspective is feminine,
however the reverse does not necessarily determine the  Woman concept. Other concepts exist that
imply  Feminine(Gender(Human)) namely,  Gal,  Girl,  Lady,  etc,  each  of  them  having  additional
implications.

2 .9  ∘  Pa t te rns

One of  the  most  powerful  tools  in  our  knowledge  manipulation  arsenal  are  patterns:  discernible
regularities within our world.  Knowledge represented with SPInDL is highly natural and excellent
candidate for manipulation using patterns.

To evidential the affinity for patterns let us consider again the generic form of the SPInDL fact, the
atom of knowledge, so to speak:

F(rn(rn-1(...(r1(r0(S1))))), qm(qm-1(...(q1(q0(S2)))))),
where r & q are known perspectives, F is the fact and S are subjects.

Owing to the properties of perspectives, 2.7 Properties of  SPInDL Constructs, it can be observed that
any perspective, is in fact a pattern for a family of more specific perspectives, and any fact is a pattern
of  a  family  of  more  specific  facts,  whether  these  facts  and  perspectives  exist  or  not,  within  the
knowledge base (case):
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F?(?(rn(rn-1(...(r1(r0(S1)))))), ?(qm(qm-1(...(q1(q0(S2)))))))
where ? are placeholders for various perspectives of the r & q divergences.

That being said, the beginning of the perspective is  not the only place to have a wild card can be
placed, and depending on where it is being placed it changes the conceptual meaning of the operation
that is being performed.

2.9.1 ∘ The Faceting

The simplest form, and the one that comes out directly from the properties of SPInDL,  2.7, is the
faceting. 

?(qm(qm-1(...(q1(q0(S2)))))

The meaning of faceting, placing the wild card in front of the divergence, or more precisely, replacing
ever more perspectives in the left of a divergence and by this creating an ever more generic view of a
subject,  is  to identify the various  facets  a  diverged subject  is  looked at  from. Let us consider  an
example:

example: 47,      The faceting pattern 

1. Feminine(Gender(Human(ref)))
2. ?(Gender(Human(ref)))
3. ?(Human(ref))
4. ?(ref)
5. ...
6. Young(Age(Human(ref)))

In example: 47 we consider ever more generic perspectives of the specific Human subject stored at ref
all the way to where we just look at a raw reference ref, from no perspective at all.

If we look at this from an information extraction angle, a pattern match on ?(Human(ref)), will yield a
collection of divergences of  Human(ref), more specifically all  the various perspectives the specific
Human(ref) divergence  is  looked  at  from.  In  the  case  presented,  Young(Age(...))  and
Feminine(Gender(...)).

2.9.2 ∘ The Generalization

The opposite way to use the pattern is to place the wild card onto the other end of the perspective
chain, or in the causal representation inside the perspective in order to obtain an ever more generic
subject.

qm(qm-1(...(q1(q0(?)))), qm(qm-1(...(q1(?)))

This shifts the importance placed on subject onto the perspective. As we generalize, we no longer look
at the subject as a specific instance, or a concept, but we rather look at the case, the knowledge base,
from the from the standpoint of the perspectives that we employ:
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example: 48,      The generalization pattern 

7. Feminine(Gender(Human(ref)))
8. Feminine(Gender(Human(?)))
9. Feminine(Gender(?)))
10. Feminine(?)
11. … 
12. Young(Age(Human(ref)))
13. Young(Age(Human(?)))
14. …
15. Young(?)
16. Feminine(Gender(Horse(ref1)))
17. … 

example: 48 is a reverse of  example: 47. We can see how we gradually loose site of the  Specific
Human we started from and move upwards onto the Human as a concept, then we loose that too and
look at the Gender as a perspective of various generic things, and so on.

If  we were  to  extract  information  on  the  Feminine(Gender(?)) pattern  in  our  case,  we would  be
obtaining a collection of all the subjects in our knowledge base that are looked at from the perspective
of Feminine(Gender(?)), namely: Feminine(Gender(Human(ref))) and Feminine(Gender(Horse(ref1))).

2.9.3 ∘ The Observation Pattern

There  is  a  notable  hybrid  pattern  that  emerges  from the  combination  of  the  Generalization  and
Faceting patterns,

?(qm(qm-1(...(q1(?))))

the answer of which is a collection of divergences that are being observed on a family of subjects. In a
derivative of example: 48, we can inquire with the pattern, ?(Human(?)), which will tell us both, the
series of perspectives that are observed on any subject that is Human, namely Gender, Age, and their
divergences Feminine(Gender) and Young(Age) respectively, but also the family of subjects, in our case
references, on which we observe these perspectives, namely which references are looked at from the
Human perspective.

The observation pattern can be considered a particular case of either the faceting or generalization
pattern, as it yields an intermediary result which can be further analyzed by a more restrictive pattern,
from either types.

***

The enumerated patterns are all  simple,  perspective patterns, because they only focus on the way
perspectives are used on subjects. Patterns however can also be used with facts, by replacing the two
divergences  in  the  fact  with  any  of  the  previous  perspective  patterns,  faceting,  generalization or
observation.

definition: 9,     The Property

The resulting pattern is matching facts not perspectives, a construction that is termed a 
property. 
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Based on the type of the pattern used in place of each divergence, we can categorize the properties as
follows:

2.9.4 ∘ Facet Coupling

As the name suggests, this pattern will be based on coupling known Facets and will yield families of of
facts containing subjects that are coupled on the specified facets. As a result, both divergences in the
fact will be replaced with generalizations so the general form becomes:

F?(rn(rn-1(...(r1(r0(?))))), qm(qm-1(...(q1(q0(?))))))

To emphasize the behavior within the context of the Cat & Cactus scenario, the pattern F?(Past(Sit(?),
Cactus(?)), will match any fact in the case which tells about any  subject that  sat in the  past on any
cactus. 

2.9.5 ∘ Subject Coupling

The exact opposite of facet coupling is  where we replace both divergences with facets instead of
generalizations. In this case the generic form of the property becomes: 

F?(?(rn(rn-1(...(r1(r0(S1)))))), ?(qm(qm-1(...(q1(q0(S2)))))))

and will yield a collection of facts containing families of divergences that have the same subjects. In a
more  narrative  way,  this  pattern  shows  all  the  various  perspectives  used  to  connect  two  sub
perspectives of two specific subjects. In the same example as presented above, F?(?(Cat(ref)), ?(ref1)),
we will obtain all the facts that connect ref seen from the perspective of Cat and ref1, seen plainly.

2.9.6 ∘ Causation

Facts, have a directionality, which gives us a sense of causality, even though facts are not necessarily
cause & effect constructions in the literal sense of the expression. It is however useful to employ the
terminology in order to emphasize the nature of a collection of facts where all the arrow point towards
a single subject, or perspective of it.

F?(rn(rn-1(...(r1(r0(?))))), ?(qm(qm-1(...(q1(q0(S2)))))))

A property construction with a generalization on the left and a facet on the right, as shown above, will
yield a collection of facts formed by a family of subjects seen from a predefined perspective that
converge towards a family of perspectives of a single well defined subject. Within the context of our
cat and cactus example, the pattern F?(Past(Sit(?)), ?(Cactus(x))), will give us all the subjects that ever
sat on the specific Cactus(x), seen from any perspective.

2.9.7 ∘ Effecting

Effecting  is  the  opposite  property  to  causation.  In  this  pattern,  the  roles  are  switched  and  the
generalization is on the right and the facet is on the left:

F?(?(rn(rn-1(...(r1(r0(S1)))))), qm(qm-1(...(q1(q0(?))))))
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creating a geometrical construction where the arrows point outwards from a family of perspectives of
a given subject, that  are sitting at  the center, to a multitude of subjects seen from a well  defined
perspective. This gives the impression that by using the pattern one is observing the ramifications, the
effects, of a subject. 

To see a concrete exemplification, let us look again at the cat & cactus example. The construction
FE(Sit(Cat(ref)), ?), will be able to yield all the things, cactus and whatever else, our specific Cat has
ever sit or will ever sit on, that we know of.

2.9.8 ∘ The Infinity Pattern

The most generic of all patterns, which is least restrictive in terms of where we put the wild card, can
generate a very large number of possible combinations, hence the the tentative term, infinity pattern.
The parameters of an infinity fact are both observations, leading to a general form:

Fi(?(rn(rn-1(...(r1(r0(?)))))), ?(qm(qm-1(...(q1(q0(?)))))))

and  will  yield  families  of  divergences  connected  to  other  families  of  divergences.  These  highly
complex  pattern  matches  can  be  used  in  analyses  and  statistical  observations  to  determine  ways
information are connected. For example Fi(?(Cat(?)), ?(Cactus(?))), can tell us the multitude of ways
cats are connected to cacti. This in itself may not be very useful, but in a very large knowledge base,
where many relevant18 facts exist between cats and cacti the determination can be made that: sitting on
cacti is painful to cats, even if this information is not clearly stated in the knowledge base.

2 .10  ∘  Advanced  Know ledge  Opera t i ons

Basic knowledge operations are designed predominantly at investigating, querying, the knowledge base
in order to discover information. The natural next step are the operations that allow us to augment the
knowledge operations that add to the information already existing in the knowledge base.

Similarly to the basic operations, the advanced operations are also based on patterns.

2.10.1 ∘ Knowledge Evolving

We have spoken earlier about the imprecise characteristics of information. It has been shown that no
matter how much we explore a subject there will still be room for more information to be extracted
and that it is really at the latitude of each individual observer to extract only what is needed and to
ignore the rest.

Unlike the traditional API based data storage systems, SPInDL does not suffer from structure lock in.
Patterns can be used to evolve the entire knowledge base into a new form, once the need arises to
store more details.

The  principle  behind  it  is  to  take  a  pattern,  any  of  the  previously  enumerated  and  perform  a
transformation into another pattern. To take the most generic form:

?(qm(qm-1(...(q0(?)))) >> ?(rn(rm-1(...(r0(?))))

or properties:

18 Relevant in therms of the determination, the conclusion drawn.
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Fpq(?(pn(pn-1(...(p0(?))))), ?(qm(qm-1(...(q0(?)))))) >>
Frz(?(rn(rn-1(...(r0(?))))), ?(zm(zm-1(...(z0(?))))))

To see a concrete example, let us consider that we know that at some point in time the cat, from sitting
perspective, and the cactus are connected, F(Sit(Cat(ref)), Cactus(refc)), but the time perspective of is
not observed in our knowledge base. Since we are not observing time, it is really irrelevant to mention
past, present, future, these concepts do not yet exist in our knowledge base. The need however arises to
create an orderly sequence in our information in order to be able to mention that the cat will never sit
on a cactus again point at which time, past, present and future, become important.

We can now perform the evolution: ?(?(Sit(?)), ?) >> ?(?(Past(Sit(?))), ?), which essentially means that
whatever was sitting in our knowledge base, was doing so in the past. After the transformation which
augmented our knowledge base with a new dimension, we are free to add the fact that the cat will not
sit on the cactus in th future, Ff(Negative(Future(Sit(Cat(ref)))), Cactus(refc). 

2.10.2 ∘ The Axiom

Another knowledge extending operation is what is tentatively dubbed the  axiom, when one or more
properties are known to exist in tandem, given a fixed set of wild cards.

F1(Xp(p1
n(p1

n-1(...(p1
0(X))))), Yp(q1

m(q1
m-1(...(q1

0(Y)))))) &
F2(Xp(p2

n(p2
n-1(...(p2

0(X))))), Yp(q2
m(q2

m-1(...(q2
0(Y)))))) &

…
Frz(Xp(rn(rn-1(...(r1(r0(X)))))), Yp(zm(zm-1(...(z0(Y))))))

where  Xp and  Yp,  X,  Y  are  wild  card  perspectives  and  subjects  respectively  with  the  particular
characteristics that are the same across an axiom.

example: 49,    Axiom

1. F1(Past(sit(X)), Y) & F2(Y(sit(X)), Pain) & F3(Negative(future(sit(X)), Y)
2. F1(Past(sit(cat(ref))), Cactus ) & F2(Cactus(sit(cat(ref))), Pain ) & F3(Negative(future(sit(cat(ref))), 

Cactus )

example: 50 point (1) states that, if something, denoted by X, sat on something else, denoted by Y, and
X through the perspective of Y is connected to pain, and also X not sit on Y in the future any more  are
connected such that they exist in synergy.

We can clearly see that if we replace X by Cat, or Cat(ref) if we talk in specifics, and we replace Y
with Cactus, than we obtain the scenario described in Illustration 5, the cat which is not sitting on a
cactus in the future the way it did on the past, as pain was a part of it.

2.10.3 ∘ The Causal Axiom

An extends form of the axiom is the causal axiom in which some of the facts are considered to be a
consequence of the other facts:

F1(Xp(p1
n(p1

n-1(...(p1
0(X))))), Yp(q1

m(q1
m-1(...(q1

0(Y)))))) &
F2(Xp(p2

n(p2
n-1(...(p2

0(X))))), Yp(q2
m(q2

m-1(...(q2
0(Y)))))) &

…
Fw(Xp(pw

n(pw
n-1(...(pw

0(X))))), Yp(qw
m(qw

m-1(...(qw
0(Y))))))
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=>>
Frz(Xp(rn(rn-1(...(r1(r0(X)))))), Yp(zm(zm-1(...(z0(Y))))))

…

We can use the (=>>) sign to separate the causing facts from the caused facts.

example: 50,    Axiom

3. F1(Past(sit(X)), Y) & F2(Y(sit(X)), Pain) => F3(Negative(future(sit(X)), Y)
4. F1(Past(sit(cat(ref))), Cactus ) & F2(Cactus(sit(cat(ref))), Pain ) => F3(Negative(future(sit(cat(ref))), 

Cactus )

Deduction is a natural result of an axiomatic construction be that causal or non causal. If we observe
all but one of the facts present in the axiom that would imply the existence of the latter one, whether
this is clearly stated in the case or not. 

2.10.4 ∘ Behavior

A less restrictive version of the axiom is the behavior operation, which unlike the axiom, is not taken
for granted but has the potential to evolve out of the knowledge base.

Let us consider again the axiom at example: 50. If we replace the X and the Y with questions marks
(?), then the elements of the construction become simple properties:

F?(Past(sit(?)), ?),
F?(?(sit(?)), Pain),
F?(Negative(future(sit(?)), ?)

If through a pattern recognition analyses, it is observed that a considerable proportion of (X, Y) pairs
have at least two of these facts present, then we might be entitled to consider this a  behavior.  A
behavior means that although the existence of the resulting axiom is not a certainty, it  is a likely
outcome. 

2 .11  ∘  Types

After our knowledge system has been liberated from the constraint of types, it is time to look at this
extremely useful analytical tool within the context of this new pattern based approach. Although types
cannot be used efficiently into storing information, for reasons presented earlier in the manuscript, it
can be very useful when manipulating concepts and specifics to consider collections of perspectives
and facts pertaining to these concepts and their specifics, rather than handle individual facts on their
own.  Information  is  subjective  to  each  observer,  but  when  observers  observe  the  same  concept
repeatedly it is likely that they will be observing from more or less the same perspective every time.
This represents the domain of interest of the observer with regards to the given concept, shortly its
type.

2.11.1 ∘ The Type Pattern

The principle behind the type is, repeatability. This means that one expects a specific of a concept to
have  a  certain  collection  of  properties  (fact  patetrns)  associated  with  it  whether  such  facts  are
observed, and thus be part of the knowledge base, or not observed and thus be unknown.
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Illustration 6 depicts a subjective way of looking at  Person in which the domain of interest are first
name, last name and birthday. In this scenario, nothing else matters to the observer, but at the same
time, the observer, will assume that these facts are characteristics of any specific Person, and as such
any person in its universe is expected to have them. 

example: 51,    The facts considered in the simple type in Illustration 6

F1(Date(Birth(Person(?))), Date(?))
F2(First Name(Person(?)), First Name(?))
F3(Last Name(Person(?)), Last Name(?))

These perspectives will change from observer to observer, but the principle remains: in one of the
chains of perspective in every property that is part of the Type, there can be found the concept a type
of which the Type is. 

definition: 10,    Type

A type, TO
x, that represents the subjective view of observer O with respect to concept X, is a 

collection of properties having the form: O:X = {Fi(?(X(?)), ?) or Fj(?, ?(X(?))), i = 1...n, j
= 1...m}

It is important to reiterate that types in SPInDL do not determine the knowledge base, they are only a
tool  to  manipulate  the  knowledge base.  Illustration  6 depicts  a type  of  Person with  minimalistic
information observed, but this does not stop any specific person in the knowledge base from having
any number of other facts that connect to or from it. As a matter fact, there could be many other types
of Person with different sets of properties.

While  types  could  be  predefined  based  on  initial  need,  they  can  also  be  a  product  of  pattern
recognition  as  the  knowledge  base  grows.  We  could  consider  a  type  as  being  the  collection  of
properties matching the form in  definition: 10 for a given concept, such that at least a threshold of
specifics of that concept are found to match all the patterns in the type. In such a setup, types become
a constantly evolving tool that depict the particular way a certain observer is capturing reality at a
particular point in time.
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2.11.2 ∘ The Name Space 

From the definition of the type it is noticeable that the notation for it, O:X, resembles remarkably the
notation of the types in classical ontologies, where O stands for the name space and X stands for the
type name. While in both cases the name space role is to attach the type a proprietary aspect, the
similarities end there.

In the classical ontologies the name space's role is to ensure uniqueness in the denomination of the
type, and thus avoid  name clashes. If the name space is unique, which it must be in the world of
ontology, then whatever comes after the colon the combination of the two remains unique, even if the
types themselves happen to be the same: abc:Person, bcd:Person, there is no clash between the two full
names. However, an exact match between the type names (whatever comes after the colon) is only a
product of coincidence:  Person in  abc has nothing in common with  Person in  bcd. They could both
represent the concept of  Person, or only one of them could do so, or the case may be that none of
them actually stand for the  Person concept. As shown in more detail in  1.6 Fractured Realities, the
two define two different realities.

By contrast SPInDL takes the exact opposite approach: if the local part of the type name happens to
be the same, then by definition, the two types represent the same concept, they just describe different
sets of properties about the concept.  abc:Person and  bcd:Person are two types of the same concept,
Person, each in the subjective view of name space owner abc and bcd respectively. With this approach,
SPInDL allows every subjective individual or organization to express their particular need to observe a
concept without destroying the common reality in which all organizations need to operate.

2.11.3 ∘ Information Transfer

In computer operated applications, a specific, an instance of a type, such as a specific  Person,  it is
considered almost exclusively as being the sum of its parts. The values associated with the instance
define the instance, some of them may be unique, like personal id numbers, social security numbers,
passport numbers, fingerprint data, etc, others are not unique such as first name, last name, and so on.
These unique attributes of a person define the person, pinpoint the person in a database. By contrast,
we humans don't rely on the uniqueness of any characteristics of a specific, our minds don't process
uniqueness in the manner computers do. To us the concept of uniqueness doesn't really exist. We live
in an open world where everything that is unique needs only be unique enough and it is only so until it
proven  otherwise.  At  that  point  another  attribute  is  appended  that  makes  the  specific  unique (if
possible) and so on. We live in a very dynamic world where things do not have mathematical rigor.

Even such, when we refer to an object, a person for instance, a mother, a father, we know it in our
minds very, very clearly who we refer to. In our minds there is no doubt about the uniqueness of our
reference. The multitude of facts we know about that reference are associated with that reference but
they don't define it. This uniqueness however cannot be communicated. It is impossible for me to
transmit the reference I have in my brain with regards to my mother for example to a third person, so I
do the next best thing, and I use characteristics that are sufficiently unique to both of us (me and the
person I am communicating to), to establish common reference. These characteristics would be a
subset  of  the  aforementioned  facts  that  I  know  about  the  object  intersected  with  the  facts  my
interlocutor knows about the object, because whatever I transmit will pinpoint a reference in his brain
that I expect uniquely refers the same thing my reference does.
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If we are to generalize this process of establishing common reference, we have to consider the fact
that each person, or groups of persons, see objects within their own particular domain of interest. As
such, they will know different facts about objects, facts that are relevant to them. Individuals or groups
develop stereotypes that capture various perspectives of concept specifics, stereotypes that consist of
patterns of facts known to exist with regards to concepts.

This  kind  of  dynamics  that  comes  into  view  whenever  we  talk  about  human  communication  is
essential to human reality because it accounts for the impreciseness and subjectivity of information. If
this would not be accounted for some part of the communication will suffer: either the some of the
parties in the communication would not be allowed to have custom aspects, or common reference
could not be established.

The SPInDL model for communication is an attempt to mimic this openness of language by relying on
the established common reality, type patterns and the operations that are possible to do with these
patterns, or more precisely sets of patterns.
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Illustration 7, 8 and 9 depict graphically the way different institutions observe the concept of Person. It
can be seen that true to their domain of interest with regards to the persons, some of the perspectives
observed are the same, while others differ. A financial institution simply has no interest in the allergies
a person might have, while a clinical institution would similarly have no interest in the CV or bio of a
person. It ca  be expected though, if two institutions or people for that matter want to communication
about a concept, that they would also observe similar facts too, such as first name, last name, date of
birth, etc. If such common perspectives do not exits, it is hard to envision that there would be any
relevant information one could transmit to the other, like the case is with the stock market proposition
between the Pirahã and the English Speaking Broker in chapter  1.3 (Common Meaning In Human
Communication).

While the fact that these institutions would see the concept of Person differently, is no strange concept
to either API based applications or ontologies, what they lack is common grounds to establish the fact
that  although  their  view  is  different,  the  concept  in  discussion  is  common.  Because  of  this
communication is by no means out of the box, but rather a tedious procedure the result of which is a
common exchange layer, procedure that needs to be repeated with every communicating partner.

In the concept centric approach of SPInDL, there is no ambiguity about the concept in discussion,
therefore any application that implements SPInDL can expect concept terminologies to point to the
same thing, in our example Persons. Therefore when the need for communication arises the only thing
that needs to be established is the set of common perspectives. The party that does not observe /
handle  the  allergy  perspective  for  instance  would  have  no  operations  defined  to  work  with  that
perspective.  In  the best  case it  could have generic  operations  such as  storing,  displaying,  but  the
relevance of the perspective ends there. There is no information in that perspective to this party. The
essence of the transferable information comes from the common perspectives: these perspectives are
information to the receiver and are available from the provider.
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example: 52,    Types of Person

Tax:Person{
F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(SSN(Person(?))), Number Sequence(?)),
F(AVG Income(Person(?))), Number(?)),
F(Current(Employer(Person(?)))), Company(?)),
F(bio(Person(?))), UTF8(?)),

}
Medical:Person{

F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(brith(Person(?))), date(?)),
F(SSN(Person(?))), Number Sequence(?)),
F(BMI(Person(?))), Number(?)),
F(Allergy(Person(?))), Allergen(?)),

}
HR:Person{

F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(AVG Income(Person(?))), Number(?)),
F(Current(Employer(Person(?)))), Company(?)),
F(bio(Person(?))), UTF8(?)),
F(Photo(Person(?))), PNG(?))

}

example:  52 shows  the  various  kinds  of  Persons  that  exist  in  our  hypothetical  community  each
defining its own type to handle the concept of Person. In this setup, the information exchange pattern,
they Common Type can be established in an ad-hoc manner, there is no need for complicated API
correlation between two different organizations. All there is to it is to match the types of each party
and establish their intersection to obtain the set of common pattern facts observed by each them with
regards to a Concept.

example: 53,    HR & Tax:Person. The common type for HR and Tax perspectives

HR & Tax:Person{
F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(AVG Income(Person(?))), Number(?)),
F(Current(Employer(Person(?)))), Company(?)),
F(Last Name(Person(?))), Last Name(?)),
F(bio(Person(?))), UTF8(?)),

}

example: 54,    Tax & Medical:Person. The common type for HR and Tax perspectives

Tax & Medical:Person{
F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(SSN(Person(?))), Number Sequence(?)),

}

example: 53 and example: 54 show two such common types that can be used for information exchange
between an HR and a Tax institution and between a Tax and Medical institution respectively.  
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2 .12  ∘  Openness ,  Commun i ty  D r i ve n  Mode l

An  interesting  byproduct  of  this  approach  is,  the  Blanket  Type, example:  55,  representing  an
exhaustive set of all properties that are observed by any member of a community. If the common type
is the intersection of the property sets, the blanket type would be the union of properties observed by
all parties.

example: 55,    Blanket Type: all perspectives captured by the community

HR:Person{
F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(SSN(Person(?))), Number Sequence(?)),
F(BMI(Person(?))), Number(?)),
F(Allergy(Person(?))), Allergen(?)),
F(AVG Income(Person(?))), Number(?)),
F(Current(Employer(Person(?)))), Company(?)),
F(Last Name(Person(?))), Last Name(?)),
F(bio(Person(?))), UTF8(?)),
F(Photo(Person(?))), PNG(?))

}

Such  blanket  types,  would  be  an  excellent  indicator  of  community  trends  and  could  serve  as
implementation reference to any newcomer into the community.

Looking at this globally and on the long term from cooperation / communication perspective, the
world of types, this  Common Reality, will  become a dynamic, evolving place, where based on the
frequency of  occurrence certain properties can become the norm or on the contrary can become
special situations. This process however, should not impact the community, because properties do not
define concepts.

Due to the large amount of knowledge that needs to be modeled in order to aid various business needs
the common reality would seem to grow impossibly large to maintain with time. But this picture stems
from  the  perception  of  today's  standards,  where  they  are  created  and  maintained  in  an
institutionalized, top to bottom, manner.

In this common reality driven model, standards are not created, they emerge. By fixing the concept,
which is already standardized in human reality, and creating a cooperation based common patterns,
participants will determine the nature of each type as best needed. As the system is used in common,
patterns will emerge for various industries and newcomers can adapt to these patterns to better aid
communication. The elasticity of the system however does not enforce them to use the pattern as
defined up to that point, and if they have special needs they can freely implement them, potentially
benefiting the industry with new and improved types.

As a property is used more and more frequently (for ex. exceeding 85% of all implementations) the
property  can  become  standard  and  thus  types  evolve.  Future  implementers  can  make  educated
decisions of how to best adapt to the domain(s) they belong to in order to facilitate communication
within their domain. If we presume the participants interest is to communicate, it is reasonable to
assume that more often than not, they will make compromises to adapt. But the freedom of not having
to fully comply with the norm yet still be able to communicate is essential to maintain participants
implication.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –



Conclusion 69

3∘Conclusion
On a global scale, with thousands or millions of participants in the community the elimination of the
need for developing a common API between every two parties represents not only a massive reduction
in complexity, effort and cost but a complete paradigm shift of how communication happens. The
complexity of establishing common ground between structure based systems raises exponentially with
the  addition  of  new  participants  in  the  discussion  by  either  requiring  the  implementation  of
exponentially  more  common  APIs  or  by  enforcing  an  ever  more  rigid  common API  that  grows
increasingly  incompatible  with  community  needs  and  change.  There  is  no  compromise,  either
approaches  crash  after  just  a  iterations,  and  the  result  is  an  Internet  of  impossible  to  reconcile
standards. The approach is simply contrary to evolution, contrary to human nature.

By contrast, natural language evolves it is not reinvented, it is not pre-created by a higher forum and
not maintained by any organization. It is a grass roots effect. The crowd builds it and with every new
participant  language  becomes  richer,  more  complete,  without  becoming more  difficult  to  master.
Language can just as easily communicate the complex information of our days as it could the works of
Shakespeare, the teaching of ancient Greeks and probably those of cave men. And it simply comes
natural to expect it to continue conveying whatever complexities our future reality will hold. 

The Semantic Perspective Information Definition Language is an attempt to replicate this elasticity
and versatility in absence of which there will be no global scale semantic web. Whether SPInDL will
prove to live up to the enormous power of natural language remains to be determined, not by one
organization, but by the crowd. In any case it is a goal that we must strive for and change is a paradigm
shift that we must accept.

Nothing in nature is meant to survive if it does not embrace evolution. Nature is Evolution. Our world
evolves, we evolve, everything that is us and around us changes with time. If we are to cope with this
change, we either create and adopt new tools all  the time, or we create one tool that can change
together with us. The choice I think, is obvious.
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