

2

Structure vs. Semantics
The Case for Common Reality in Computing

Author: Stefan Harsan Farr
Email: contact@semanticperspective.org

Preprint Edition 2014

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

3

Copyright © 2014 by Stefan Harsan Farr

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in

any form or by any means, including photocopying, recording, or other electronic or mechanical
methods, without the prior written permission of the publisher, except in the case of brief

quotations embodied in critical reviews and certain other noncommercial uses permitted by
copyright law. For permission requests, write to the publisher, addressed “Attention: Permissions

Coordinator,” at the address below.

– patent pending –

Stefan Harsan Farr
www. semanticperspective.org

contact@samnticperspective.org

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

http://www.semanticperspective.org/
mailto:contact@samnticperspective.org
http://www.semanticperspective.org/

3

Abstract

Against the massive work put into what has catalyzed into the concept of Web 3.0, the promise of a
single semantically charged Internet seem to continue to elude the IT community. The present work
raises the flag on a trend that the author believes to be at the heart of this lack of success, namely the
that of the lack of a common reality. It is being argued that the structure oriented approach that stands
at the base of virtually every representation system, ultimately leads to frictions that cannot be
reconciled and as a consequence prevent the formation of what would be a true revolution in the IT
industry: the semantic web. The paper continues by proposing an alternative solution to knowledge
representation which does away with structure relying instead of pure semantics which is borrowed
unaltered from human language. The paper further argues that this paradigm shift can also be the
catalyst that is needed to open the way to free flow of information and later to the formation web 3.0.

Keywords: structured data, semantic data, computer communication, b2b, concepts, natural language,
knowledge representation, web 3.0

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 5

1∘The Case For Common Reality
It would probably be safe to assume that the intended audience is already familiar with the conceptual
differences between data, information and knowledge, these are, after all, the pillar concepts of
information technology. It is non-the-less, important with regards to the outcome of the work, to talk
about them and emphasize certain aspects of them, as they stand at the base of plot the current case is
built upon.

1 .1 ∘ I n fo rmat ion

If we are to look at the definition of the terms as found in the English Language Dictionary we can see
that the terms are not clear cut and depend heavily on each other:

Data, “is factual information organized for analysis and processing”, Information, “is knowledge
derived from study, observation and experience” and Knowledge, is defined as “the state of knowing,
or possession of specific information about a certain subject”.

The definitions go full circle and they are all centered around our capability to observe, remember and
adjust our future actions according to the things that we observe and remember. This is what most
consider Knowledge to be, more informally speaking: the totality of facts that we can observe and
remember coupled with our ability to manipulate consciously the course of our actions based on them.
The facts that generate the decisions associated with knowledge, are chunks of information:
conglomerates of facts that make sense together in a given situation enough so they can trigger that
change in behavior. This aspect of making sense is essential to Information, without it there is no
reaction, there is no knowledge, it's only Data: random facts, observations devoid of context that do
not make sense on their own, but which can nevertheless be recorded, replayed and otherwise
manipulated.

Information is always semantic, it has meaning, whereas data is not. So if we are to create a hierarchy
between these terms, Data, would sit at the bottom and represent the blind facts drawn from the
environment. When processed and put into context so that it makes sense it becomes Information, and
when the totality of the information is put together so that decisions can be made Knowledge arises.

In the day to day human life we don't really operate with data, as it is a form of storing facts which is
useless in most cases, not being readily accessible. In our heads, we don't store data, we store
information, facts that are relevant to our own, personal existence, facts that are highly connected and
very readily available making them highly valuable in the day to day decision making process. When
we read a book, the letters of the book are data, but we are not concerned with those, not consciously
anyways, we are driven inexorably towards extracting the information from the book: we read until it
makes sense. The human mind, is not designed to work with data but the concept was born anyway
(even if it was not consciously termed at that point) from necessity when some people needed to work
with other people's information.

Evidently when one operates on other people's information, this (the information) will loose some or
all of its meaning, so other forms of mechanisms need to be put in place to ensure the information
survives a transitory meaninglessness. For example, one can copy an entire book and not understand
its content, nevertheless, the information in the book is preserved, even transferred into the new book
thus being multiplied. Information can survive meaninglessness, and can even be manipulated in this
meaningless state, but it is essential that an individual who does understand the information encodes

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 5

(It) into this transient form, and makes it available to the data processor which does its job. Later
another individual with capability to understand the information has to decode the data and make
sense of it.

In today's world it is the IT professional's duty to put the information through the semantic grinder and
transform it into this meaningless state in which it can be manipulated by the computer, but in a world
where we are trying more and more to make sense of the vast amount of Data that we have come to
collect, this skill that we readily learn as soon as we step into the school is becoming more of an
impediment rather than an asset. It is more and more difficult to discern where information ends and
data begins, and all too often the very code that is destined to hide the meaning is confused with the
meaning itself.

While the field of Information Technology contains the word “information” in its name, perhaps
because it is meant to bring information to people, to create information and better the decision
making process its object of work is in fact data, not information. Information is very difficult to work
with because it does not have clear boundaries. Data is stable, stand alone and context independent;
one can always count on data to be data, but information depends on the subtlety of meaning which
varies enormously from situation to situation, from interpreter to interpreter. What may represent
information in a certain context it may be meaningless raw data within a different context or
something in between. While data can be quantified, stored and framed between certain limits,
information will always be a gradient of values that depends heavily on who observes it and how it is
observed.

It is not difficult to understand that due to this intimate nature of information, people who work with
it, find it difficult to draw the line between data and information. We are intelligent creatures, we
possess knowledge and we operate with information on a constant basis. Whenever we look at data we
will strive to make sense of it and we will always find some information that hides in there. Yet more
often than not, the information that we see is just an illusion, a residual flicker of our thinking process
interacting with the data that we operate with. Once that data is disconnected from us and becomes
exclusively part of the cybernetic environment that entire meaning is lost. It can exist no more. Unlike
us, the cybernetic system lacks the spark that is needed to transform data into information and our
programming techniques are not doing a great job in improving this handicap. If we are to step into a
new, semantic era, where information is stored in meaningful state outside the brains of individuals,
we need to reanalyze what information is and what it represents and we need to understand its
limitations and particularities. We need to especially understand how meaning (semantics) connects to
data and the way they, together, create Information.

1 .2 ∘ Sub jec t i v i t y & I ncomp le teness

As opposed to data, information cannot exist on its own. It arises dynamically from the interaction of
data with that which makes use of it. It is a disconcerting feeling for a computer scientist to realize
that information, the very object of his profession is not perfect, but rather something that will be
different to every single user that observes it.

To emphasize this imperfectness, let us consider the following statement:

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Subjectivity & Incompleteness 7

example: 1

“The man is 35 years old.”

It is a well formed statement that conveys a very valid piece of information about the person in
discussion, but to most of us, this sentence contains no real information. In the best case it is a piece
of data torn out of a context that we are not aware of. In order for this to represent actual information
one requires considerable knowledge in what this specific context is concerned: “Who is the man?”,
“When was this stated?”, are just two of the questions that can immediately be asked by somebody
who's reading this single sentence in a transcript of the underlying conversation, not having a context
to place it in.

example: 2

“The man who lives on Elm Street 99999, apartment X, Aukland, New Zeeland is 35 years old.”
“The man who lives on Elm Street 99999, apartment X, Aukland, New Zeeland was 35 years old in year
2013.”

The somewhat more complete sentence in example: 2 can quickly respond to these questions, but
again the statements imply a great deal of assumptions about who is going to read them: “What is an
Aukland?”, “What is a New Zeeland?”, “What does year 2013 actually mean?”.

The fact of the matter is, that regardless of how much we describe the scenario, there will still be
questions that are unanswered and assumptions that have to be made regarding a-priori knowledge
possessed by the data consumer, regarding the context in which the information resides.

This effect is not limited to information conveyed via spoken or written language. Any object is
potentially describable by an infinite or unreasonably large amount of attributes, some of which may
even be inaccessible, and as such any information drawn from that subject is inherently incomplete.

Failure to recognize this aspects could have grave consequences with regards to information
processing. If one does not recognize and accept incompleteness of information one would be tempted
to analyze an object ad infinitum, trying to grasp all the details and characteristics of it. The process
itself would likely generate an information overload. In the world of humans though, this is not the
case. The human brain is very well equipped for these particularities. Most of the time it will only
draw just as much information as we actually need to identify important aspects about the object:
categorize the object, identify whether it is dangerous, useful, etc. Irrelevant facts, even if identified,
are quickly forgotten making room in the memory for the next thing.

This selective observation (extraction of information) takes us directly to the other important aspect of
information: subjectivity. All subjects draw information using their own particular sensors and
interpreters and will filter it through their own preexisting knowledge and angle of interest. As such
they will identify particular aspects of the object that are unique to them, thus giving information a
highly subjective character.

It will become clear later on in this chapter, why these two seemingly evident characteristics are so
important within the context of “knowledge representation” and how present representation systems
fail to properly account for them.

1.2.1 ∘ Information Transfer (communication)

When it comes to the individual, subjectivity is not all that evident because there is no point of
reference, but when we look at the case of information transfer, it becomes obvious that it is so
essential, that failure to recognize it would render communication impossible. If subjectivity would not

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 7

be recognized and dealt with, two subjects could never communicate because they would never be able
to establish consensus about the objects of their discussion. In the world of human communication,
this does not happen either, because the brain can calculate the various degrees to which certain
information is particular to itself, the individual, the group of individuals that are communicating or
larger, more complex circle of individuals. Common concepts that uniquely identify objects, within
particular contexts, are conceived such that they are precise enough to serve their purpose yet loose
enough to allow for individual perspective. For example there is a pretty wide consensus of what the
color “red” means and people don't usually argue about the “redness” of an object. They may however
have different perspective on certain shades like, light pink versus light violet, where some will see it
pink and some will see it violet, but these cases are rare in human communication, as language is
designed to grasp what's common not what's different.

1 .3 ∘ Common Mean ing I n Human Commun ica t i on

In the world of human communication, common concepts are extremely important not only because
of the characteristics themselves but because they uniquely identify objects or classes of objects and
determine the common reality of the communicating subjects.

Illustration 1: Person to person communication, common
reality (definitions)

When information is transferred this way, the absolute priority is determining the nature and identity
of the object of the discussion first: what that object is, what it represents for both parties, what its
common meaning is. Only after the common meaning is established, structural information, or details
about the object, can come into discussion.

When two people speak, the information transfer is possible because both brains, the sender and the
recipient relate to the same “reality”, be that the real world or some abstract world like mathematics or
feelings. The recipient may be a doctor and the sender a banker, but when the “Person” word is
invoked both of them associate it with an individual in the real world. They may know many different
characteristics about the person particular to their profession, but when they speak, none of those
particularities matter. What matters is what they have in common and to access that, they need an
absolutely simple common pointer, which is the concept of “Person”. The simplicity of this is so
powerful, that even if they speak different languages they can actually transmit the information using a
dictionary, because regardless of how the word is pronounced or written, it references the same simple
concept in a reality that is common to both parties, Illustration 1.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Common Meaning In Human Communication 9

Sentences can be translated the same way. Rules (grammars) may be different in different languages,
nevertheless they are based on the same reality, on the same objects, on the same actions, on the same
context (time, person, possession, command, etc.) and as such, a translator, somebody that knows both
languages, can transpose the sentences (these conglomerates of objects, contexts and rules) from one
language to another such that the reality, the semantics of the message stays intact. The fact that this
reality is common is a sine qua non condition why such translations are possible. Each language is in
fact an encoding of the reality of people that speak it and when a translator has knowledge of both
encodings and the encoded realities overlap sufficiently, he or she can transcode this portion of reality
from one encoding to the other without any losses. If however, one of the languages lacks a term for a
concept, this usually occurs when the reality of the people who developed the language lacks the
concept itself altogether, translation becomes difficult or impossible.

The Pirahã language, for example, has no cardinal or ordinal numbers. Why this is, is still subject to
academic debate: some argue that the Pirahã people cannot learn numeracy, others advocate that they
can count but they choose not to. Whatever the reason, translating example: 3 into Pirahã in an exact
manner, is impossible, as their reality lacks a concept behind the source language, numbers:

example: 3, Partially translatable sentence

“Twenty people went hunting and they brought back three pigs.”

For the Pirahã, numbers don't exist. A translator might be able to approximate the meaning and
transpose it to the other reality with some information loss. Instead of “twenty” they can use
something akin to “many”, instead of “three” they can use something like “few”. This is a much more
difficult job to do than simple translation, because direct correspondence between realities does not
exist.

An interesting aspect of this translation process is that we, who's reality is compatible with that which
English language models, would be tempted to say that the translation occurred with information loss,
simply because the Pirahã reality lacks some fundamental aspect of the actual reality, and so, a back
and forth translation will not restore the information to its original state. This view, however is
judgmental and incomplete. The Pirahã reality does capture multiplicity / quantity, but it does so in
different forms, which is not fully compatible with ours. The proper way to see this is that the two
subjective realities are fundamentally different from this point of view and hence the translation occurs
with information loss not because one reality is deficient, but because the two subjective realities
contain concepts that are not fully compatible.

With such fractured reality, translations is only possible provided that some level of correspondence
does exist between the two realities within the domain of the information being transferred and that
the translator knows both these realities well enough to make a correlation. On the same token, the
translation in the example: 4 would be utterly impossible, because there is nothing in the message that
could remotely be correlated to the Pirahã reality1:

example: 4, Untranslatable sentence

“Three brokers sold ten thousand bonds today on the stock market and made a million dollars in profit.”

In case of this sentence, there is no common reality that a translator can refer to in translating the
sentence. Their world is based on different values as ours, from this particular angle, and as such there
is nothing of value to them in this sentence. This particular information cannot flow from one side to
the other simply because there is no context (meaning) to give birth to information on one of the sides.

1 The Pirahã are an indigenous hunter-gatherer tribe that live in the Amazon basin.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 9

There is no reality behind the data. For fairness of treatment, I must point that for obvious reasons it is
impossible to me to give an example of a sentence (information conveyed) that would transmit
something that exist in Pirahã world and does not exist in ours.

It is I think reasonable to state that the reason why computers have such difficulties in human
translating language may be that they do not “understand”2 the reality in which the sentence is based.
Computers are unaware of the meaning of the sentence and as such they must rely on translation
between words and grammar and statistical matching, which highly inaccurate and sometimes can be
confusing.

Computers don't have a reality and whether they can have one remains to be decided by future AI
research. Until then, short of learning the correspondence in languages for every single expression that
exists out there, translations will be imprecise. Even if the future computers will possess an internal
cognitive process akin to consciousness that reflects in some sort of reality that they, among
themselves share, it is still questionable whether they'll be able to translate our language. For that to
happen, they will also have to sense our reality because only then can they create precise
correspondence between real concepts and information written.

1 .4 ∘ I n fo rmat ion I n Compute r Prog ramming

The essence of computer programming is the creation of software, packets of instructions, that can
tell generic hardware, such as computers, to perform a specific task. There are numerous
practicabilities of software but the current paper targets a specific branch of this industry, which is
concerned with the information manipulation and interchange at high level. This branch deals
extensively with the abstraction, collection, organization, storage and exchange of data that is collected
from reality, therefore, “information in computer programming” will be analyzed from this specific
angle.

It is important to re-iterate, that although we are discussing about information manipulation it is really
data that is being manipulated. The state of information is lost the moment it is entered into a
computational system, and it will exist in this meaning free form until an operator makes sense of it.
Evidently not all information survives this transitional process, a lot of it is lost the moment the
encoding happens, because the process can only capture information for which an encoding system
exists. All the rest of infinitely complex reality behind each concept is lost, or presumed to exist at the
destination and be identifiable from the data being transmitted.

1.4.1 ∘ Types, Static Reality

Data types or simply types, are categories of data based on limitations on the values that they may
have making them easier to manipulate.

At machine code level the boundary between data and instruction becomes less evident so
programming languages like Assembly had no need for data types. But even the simplest of operations
are arduous to implement in such languages and with the rise of applications that were concerned with
the manipulation of data, the higher level programing languages, the concept of Type appeared.
Having predefined limitations on their values, brought inherently by certain characteristics imposed

2 Make sense of the information and its context with respect to the reality in which it is defined

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 11

a-priori, it became easier to implement sets of instructions (operations and functions) that can
manipulate these groups of data without the need to know their values prior to the construction of
these functions.

There is an important aspect to be said with regards to the type. The type itself, the category to which
data belongs to can and often is information. It is probably the only kind of information that is
available to the computer software and not the human operator. Because the type often determines the
kinds of operations that can or must be performed on pieces of data, it represents an element that can
be a precursor in the decision making process of the computer software. Even if such decision making
process is nothing else but a pre-programmed set of instructions, it nevertheless is a sort of knowledge
mechanism (see more at: 1.4.5 Semantics, The meaning Of things).

◊ P R I M I T I V E S

Primitives are the most basic of data types and have the widest acceptance of all the types. Almost
every programming language makes use of them and are usually part of the core of the programming
language.

Although they may be called different names (“int”, “integer”) in different programing languages they
usually refer to the same thing and they are needed because they represent a necessity of the computer
programming reality. Contrary to what the name suggest, an “Integer”, is not any mathematical integer
but rather only one of the mathematical integers in the range [-231, +231-1], that are representable on
32 bits. As such, the Integer type is a partial wrapper of the mathematical integer numbers combined
with a wrapper of a limitation in the computing reality: that information is ultimately encoded in bits
(ones and zeros) and only a finite number of bits fit onto physical devices such as a block of memory
or the stack. If more precision is needed, a wider range type can be used called “long integer” which
can take value in the range [-263, +263-1], a 64 bit representation system, nevertheless, it will still
represent the combined concept as in the case of simple simple int.

example: 5, Some common primitives

• boolean: represents a logical value (true or false, one or zero) on a bit.

• integers: represents an integer value in the range of [-231, +231-1] or [-263, +263-1],

• floating points: represent a real number in floating point representation. The range is
much larger than that of integers for the same space they occupy. The precision varies
with the magnitude of the number: the larger the numbers, the bigger the gap between
two consecutive representable number (as real numbers have infinite precision and as
such are impossible to represent with finite resources).

• character: represents an alphanumerical character on a byte, usually

• string: represents a sequence of characters, arbitrary texts (usually human readable)

• byte array: represents a raw sequence of data of any kind (usually not human readable)

These primitives (the most basic level of them) are a lot more about representation rather than the
actual meaning of what they encode: concepts like integer, or real are only loosely encoded into these
types. In fact, if arbitrary precision is needed for special purposes like scientific data or accounting,
custom representations need to be created, like BigInteger or BigDecimal in Java programming
language, because regular primitives are not suitable.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 11

These things may not be new for the intended audience, but it is important to name them because
there is a lot of confusion between the concept and representation of the concept, that stem from the
fact that the representations are named suggestively to match the concept that they loosely encode and
make it easier for the developer to work with.

In fact they could be just as well be named “regetni”3 or “elbuod” or “naeloob”, because it would be
just the same from the compiler / interpreter or machine code's perspective. They would only be a lot
harder to work with. This is why virtually all programming languages that use mathematical
operations will name the integer type suggestively as “int” or “integer” and as such, the terminology
became universal.

Rarely do any programming language extend their set of primitive types beyond these representational
primitive. It is the responsibility of the developer to correctly encode any custom concept onto these
universal structures such that it captures all the subjective information regarding those concepts within
the context of the client and the provided specification.

◊ V A R I A B L E S

Before we get to the structured data types, it is important to mention the concept of variable, another
extensively used artifact in computer science. In programming (at least from the aspect discussed by
this paper), variables are containers that can be used to store values and operate on them.

example: 6, General format of a variable.

Type name = initial value;

Variables are usually defined as an identifier (a name) which is used as locator for the stored value
(stack or memory), a type that serves as constraint for the values that can be assigned to the variable
and it may also contain an initial value. Identifier is usually ubiquitous in all languages except for very
low level languages like Assembly4, but the other elements vary from language to language.

This seemingly simple construct is so powerful that it is used everywhere in computer programming.
Everything from simple memory zones allocated for temporary storage, cells in a spreadsheet, a
database or a dot on the screen can be thought of as a variable: a container in which value can be
stored. This concept of placing a value in a container is essential to the computing process, it is the
only way operations can be made in a serial system, but beyond that, things like type and name are
really irrelevant once the software becomes machine code. Nevertheless they are extensively used and
very popular too, because both, type and name have the power to carry semantics into the process of
creating the computer program. We do not give it a lot of thought, but the fact that we can assign
meaningful names to variable revolutionized computer programming. We'll discuss more on this
subject later.

◊ A R R A Y S & M A T R I C E S , G R A P H S , T R E E S & M A P S

It is sometimes useful to be able to work with collections of data which can be handled in bulk
according to some characteristics. Arrays, matrices (multi dimensional arrays), lists, sets, trees, maps
are all such collections.

3 Integer written backwards
4 Assembly language is an instruction oriented language which is very close to machine language. Variables are not

used, operations are done by inserting values directly into memory addresses or operator registries.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 13

It is important to note that although programming languages treat them under the same umbrella,
these collections are not in fact data types, but rather compound variables. Variables that have multiple
slots where data can be placed, according to specific rules, some fixed some dynamic in nature. In the
case of arrays and matrices, which are similar to those in mathematics, the slots are accessible by their
position, and they can have uni or bi-dimensional structure respectively and occasionally even more. In
the case of linked structures like linked lists, trees, or graphs, access is done according to the relation
between elements. People that are still familiar with older programming languages like Standard C or
Pascal, can recall that these linked data structures did not even exist, back then as part of the standard
API. They had to be defined as collections of dynamically allocated memory zones and then linked
with one another.

Maps are interesting because they are very similar with the concept of structure, as elements in a Map
are accessible by their names, so to speak, and as such additional information exists besides the value
of the variable itself, in the form of a key or a name. As opposed to structures, this information can be
carried into the application, and be part of the program's execution.

◊ S T R U C T U R E S

Concepts and values handled by these modern information manipulating applications go well beyond
simple integers or reals or values of truth. To be able to easily manipulate data that are complex,
structured types were created out of which developers can construct complex types that represent
complex concepts from reality.

example: 7, Structure

Book{
String title;
String author;
String publisher;
Date datePublished;
string ISBN;
etc …

}

Suppose the concept of Book has to be wrapped in a computer program and that in the eye of the
client a book would be described by a series of properties, such as title, author, etc … example: 7. As
such, these properties have to be treated together for each individual book, otherwise it would be
really difficult to track all these properties.

Structures contain ordered groups of data items. Unlike the elements of an array, the items within a
structure can have varied data types and are accessible using similar syntax as variables. Classic
programming languages treat these these properties as the definition of the type, in the current case a
Book, and model them conceptually together with various paradigms.

The Relational Model, considers the type book as a relation between the typed items that construct the
book and packs them together in relations (better known as tables), where each row is a group of
values that together represent an individual relation, a book in our case. The final structure is in fact a
matrix of values, where the rows represent individual relations (book entries) and each column
represents one particular aspect of all known (stored) relations. A language was built which very
efficiently handles manipulations related to the storage of the data in this form (storing, recovering,
filtering, etc …) due to the reduced complexity of the architecture (both structure wise and operation
wise). To make a blunt analogy, databases are memory zones, with each table being a matrix like the
one mentioned above accessible via a variable, which is the table name.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 13

To efficiently handle data like Book, programming languages don't treat them as arrays of coupled
values, but rather like structures, variables that have variables inside. Instead of book = {book[0],
book[1], book[2], … }, it becomes book = {book.title, book.author, book.publisher, …} which is a lot
easier to work with. The approach allows developers to embed semantic elements into the construction
of the program, the source code, an aid that makes the program many times easier to develop,
maintain, upgrade, handed over to other developer, test, etc …

1.4.2 ∘ Operations & Functions

The vast majority of programming languages in use today are structured languages. The structuring
refers to grouping functionality together into loops, blocks of codes and subroutines in contrast with
the using the “go to” statement which was used to jump to different parts of a single chain of
commands. This structure improves clarity and re-usability of code.

One of the most notable features of structured programming are the subroutines, also called methods,
procedures, function, etc., depending on the language but they essentially consist of subsets of
instructions, grouped together to perform a specific operation in a black box like fashion: whoever
uses the code only needs to know what goes in and what comes out (in terms of types), in case of
functional languages and additionally how the subroutine modifies the state of the application in case
of imperative language (which are the vast majority of them).

There are many paradigms of computing regarding functions (declarative, function, logical, and so on)
which impose restrictions on how these subroutines should act regarding the computing environment
(some change state, others are not allowed to change state only have output) but the vast majority of
languages that handle data modeling (procedural programming or object oriented programming) apply
the concept of the subroutine as a mixed concept. They are allowed to have, or not to have, a return
value and they are also are allowed to have side effects (affect application state beyond the scope of the
function and its return value). This versatility, is a compromise, which is necessary in most cases due
to the complications that arise from using a strict paradigm like procedural programming does. The
benefits are increased efficiencies, re-usability, but there are also drawbacks to this approach.

These functions rely almost exclusively on structure imposing very little limitations which can be
detrimental when it comes to inference (use of deductive reasoning) and code automation because
there are no basis on which such paradigms can be implemented. The interior of the subroutine can be
as long (verbose) as the developer deems fit, can perform any number of changes to the state of the
application as a whole: write to disk, network, change user interface and so on. While these are all
necessary things, the fact that they are allowed to be performed all in one place is a huge handicap
from the perspective of semantics.

Operations on the other hand are code snippets that usually wrap a single action. Examples of
operations are the mathematical plus “+” operation, subtraction, multiplication, logical operations like
greater than “>”, and so on.

Operations are often regarded as simple, semantically charged activity entities. Operations strongly
wrap the concept what they stand for, the restrictions they impose on the operands (parameters) and
for this reason, operator overloading has often been criticized that it allows developers to create
operations that are confusing by using an operator that wraps a concept, for example the “+” sign, and
implement code for it that perform a totally different concept, like adding an element to a set5. It is

5 One could state that adding an element to a set has similarities with the addition of number, for what the + sign stands
for, but the similarities are brought in by the similarities in language. The two concepts are completely different.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 15

notable how people observed this fact and even argued against operator overload for feeling the need
to preserve the semantics of the activity across code and even language. This is especially interesting
because functions suffer from the same problem too, (see 1.4.3 - Functional confusion), yet nobody
seems to be bothered by that. The reason for this bias could be a combination of computing reality
and developers' need for semantic information. Operations come from mathematics, are very strict in
nature and we are taught to like that strictness because it is very reliable:

example: 8, Result of the + operation based on the input

n + n1 = n2, for n, n1, n2 ∈ ℕ
n + r = r1, for n and r, r∈ ℕ 1 ∈ ℝ

The definition domains (types) of input and output values are so compact, so simple and so strict, that
there is absolutely no doubt in the formulation. It is elementary, it conserves the concept and the same
way mathematical proofs can be built on it, so can automation inside a software.

The problem is that operations are few because mathematics is only concerned with a limited aspect
of our reality and these operations are designed to serve that strict concern. Programming on the other
hand has many and various needs outside the scope of mathematics (conceptually speaking). Adding a
button to a canvas object or watching for events on the network have no mathematical counterpart. To
serve these many and various needs the functions (subroutines) were developed. These functions have
loose definitions to be versatile, as opposed operations but as such they lost the semantic charge and
developers have learned to accept that as a fact.

1.4.3 ∘ Functional Confusion

If we were to show the general function definition in computer programming to somebody whose is
not a software professional it would be nothing more than an unintelligible collection of words.

example: 9, Schematic definition of a function

[language specific modifiers] result_type function_name(
parameter_type_0 parameter_name_0,
…,
parameter_type_n parameter_name_n){

…
function body
...

}

As strange this may seem to the audience, the reason for this is that the generic definition form is
nothing more than the definition, of the definition, of functions. The words are laid down in a very
specific order, certain delimiters are used to separate words like, “modifier”, “return type”, “function
name”, “parameter name”, and so on6 that make absolutely no sense to the untrained eye. This aspect
may seem unimportant, considering that such people do not get deep enough into the technical side of
applications for this to matter, however this emphasizes how in the understanding process of human
beings, structure means nothing without context and meaning.

If on the other hand such a person takes a look at an actual example of a function, he or she might be
able to comprehend what the function is suppose to do, even if they had no connection with
programming, provided they are familiar with the terms used in the function:

6 Notice the lack of underscore in the enumeration. Humans outside the technical realm, who do not understand the
importance of space versus underscore from the perspective of parsing will not give any importance to it.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 15

example: 10, Intelligible function example

Number divide(Number nominator, Number denominator){
return nominator/denominator;

}

Even if this person has never seen an operation written like this, but has knowledge of the division
operation between numbers, he or she can realize that this operation is what the layout is actually
about. This is possible because the words themselves “number”, “divide”, “denominator”, “nominator”
have very well defined meanings in the individual's intellect and together they hint towards the division
of the nominator by the denominator.

It is not the structure of the function that leads the person to this conclusion, it is the combination of a
certain set of concepts that together lead to a unique conclusion. It could be presented in any other
form, as long as the person has knowledge of the division of numbers he or she would still come to the
same conclusion. In fact the irony is that the function could actually do a completely different thing,
with regards to the implementation, as long as the person does not see or cannot understand the
implementation of the function, would still conclude that the function performs a division. This
scenario however is not likely, because the fact that the function is laid out and named such is a
consequence of the need of developers to embed additional knowledge in the description of the
function which makes it recognizable and easy to work with.

Compilers completely do away with these human readable information, because programs do not need
them to perform their pre-programmed jobs:

example: 11, Function stripped away of semantic hints

Number a(Number b, Number c){
return b/c;

}

the definition in example: 11 is just as good from a computer's perspective, if only a programmer
could keep track of functions that way.

The computer can do this, because the program, when finished, does not require meaning in the
operations only series of correctly laid out operations that in the end can yield the expected result. It is
the cognitive process of creating the program itself which requires additional knowledge to be
embedded in these functions and the definition form of function allows that for most programming
languages7.

For simplicity, this knowledge that can be embedded in the description of the functions while building
computer programs is not regulated. Neither is the order of the parameters, or their type. It is a
generic scaffold that can be used to implement a great variety of operations, even multiple variations
of implementations for the same operation.

The function:

7 Assembly language will not allow for such knowledge but languages like this are very rarely used and usually for small
scale applications or modules.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 17

example: 12, Division function with parameters in reversed order

Number divide(Number denominator, Number nominator){
return nominator/denominator;

}

gives the same result as the one defined in the previous example but the input parameters need to be
provided in a different order:

example: 13, Call of division function for different implementations

divide(10, 5) = 2, in case of the definition at example: 10
divide(5, 10) = 2, in case of the definition in example: 12

The program itself will not make this distinction, the programmer has to do it during the
programming procedure and make sure the functions are used in the correct form. Failure to do so,
result in errors in program that may be very difficult to find. For this reason, functions are usually
accompanied by documentation which provide even more details about the way they behave,
exceptional situations8, parameter types, and so on.

Notice that although the order of the parameters were reversed in the declaration of the function, they
appear in the same order in the body of the function:

example: 14

nominator/denominator

This is because the names themselves were chosen to represent the position of the number with the
operation that the function is supposed to perform. In a division in mathematics, the concept of
“nominator” represents the number that is being divided and the “denominator” the number that is
being divided with. By using these names, it is easier for program developers to use the function. Had
we used the conceptless representation like in example: 11, there would be no way of knowing which
one is which. Within the context of a programmer's knowledge, such names, represent real
information, because the names themselves are semantic charges that link whatever is being done
there in the code to the actual reality that exists in the programmer's head and as a matter fact in the
entire reality (mathematical reality in our case) shared by all programmers.

After compilation, functions become machine language. They are stripped of all meaning, leaving
behind an optimized chain of commands, which the machine executes blindly until it reaches an exit
point. This is what software is, stacks upon stacks of commands interacting with a layer of
standardized interfaces and communication protocols making it very difficult to quality test an
application: the machine can't do it, because it is not supposed to and it does not have the means,
people can do it but they are basically testing a black box, which sometimes can be really complex.

1.4.4 ∘ Type Confusion

When applications are built, the business information scaffold is captured by the engineers, who create
data structures by way of which a particular subset of the information can be stored, manipulated and
if necessary communicated, Illustration 2. When such communication need arises, the engineers of
the two applications agree on a common structure, which is used to encode information onto simple,
highly standardized protocols, like HTTP, TCP, IP, Ethernet.

8 In the given example, division by zero is a mathematical impossibility and thus cannot yield a number as a result. This
is an exceptional situation which is handled differently.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 17

Illustration 2: Common interface,
definition (source code) perspective

Illustration 3: Common interface, execution
(compiled code) perspective

Information is transferred as an unstructured payload of bytes via these mediums and is then decoded
based on this common structure or interface after which, the received data becomes available for
processing at the destination. All these commonly used interfaces are grouped together in an API
(application programming interface) and serve as a protocol for communication between the
applications of the two parties (The Principles of a Semantically Rich Data Representation System).

But once the application is compiled and deployed the semantics of the information that are stored in
the code are lost to the software the very same way they become lost in the case of functions. Names
are removed and any semantics associated with them that would be capable to confer it information
status is destroyed. Whatever is put in there it becomes data. As such, a human is needed at each and
of the underlying applications to input and interpret the data and turn it into meaningful information
again. The vast majority of data manipulation software today are not concerned with the meaning of
the data that they manipulate. After the information passes the user and enters the system, it turns into
a meaningless structure like in Illustration 3. This way it is imperative that an exact match exists
between the structures used for information interchange, because it is the only constant that exists at
that point (during application run-time) within the application. Failure to adhere to that will result in
the data becoming deteriorated and the resulting information will be corrupted as it would be based on
erroneous data. This strictness of the system and the lack of persistent semantics is an enormous
impediment in the standardization of this layer of communication.

Needs regarding information capture and encoding are enormously various, there are as many as there
are observers. Different businesses capture different characteristics of certain concepts, for example, a
financial institution like a bank, would be interested in financial aspects of person, like income,
employment, assets owned, a health institution like a hospital would likely be interested in things like
body mass index, age, history of diseases in the family, allergies, etc, whereas an institution like an
insurance company would probably be interested in a subset of both. There is no one single structure
that can universally define a person, so if the three institutions are to interchange information, they
need to agree on a strict API that is usable to all three. Unfortunately as the number of the potential
participants in the communication raises and their focus broadens, the common interface becomes so
clunky that it would be very cumbersome to use. Even if such, all encompassing interface, could be

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 19

built and enforced, there still is the potential of a future business that would need yet an extra feature.
This would invalidate the standard in place and generate an extraordinary effort to bring the industry
up to date with the new standard.

Due to this lack of standardization, communication is limited to prearranged, pre-programmed,
interfaces that are build into the software and very costly to change.

Ironically, many businesses in the world have in fact the same or very similar needs, some are even
communicating using interfaces that are similar or exact matches of other, unknown businesses, yet
the lack of context in the system blocks the capability of matching up these APIs, which leads to a
continuous reinvention of the wheel and perpetual need for human intervention to discover, convene
and integrate the communication protocols.

1.4.5 ∘ Semantics, The Meaning Of Things

Semantics, the meaning of things, what things represent, is a concept highly interlinked with the
thought process, the consciousness, of humans and human existence itself. As such, it is very hard or
even impossible to thoroughly define it outside this context, but it seems to have a lot to do with our
ability to operate on or based on things.

It can be argued, very simplistically speaking, that the meaning of things is in fact the totality of
actions that a person can autonomously perform with or based on those things, be that mechanical or
mental in nature. The autonomous term is highly important, because if the person, or any agent9 for
that matter, needs “guidance” in performing an action with regards to a specific thing or cannot
perform any action with that thing, it means that the object in discussion has limited or no meaning to
him. These are very rear situations, because for almost anything that we pick from our reality there is
something that we can do with it, not necessarily mechanically. This is completely natural because
otherwise it would not be part of our reality, it would be meaningless to us the same way as atoms,
quarks and other subatomic elements are irrelevant to the vast majority of humans in the everyday life
and the same way as numbers are meaningless to the Pirahã.

If the meaning of objects to an agent stands in the activities that the agent can perform with these
objects, the meaning of activities would stand in the objects they affect together with the activities that
can be performed with these activities: equivalences, implications, triggers, etc. This blend of objects
and activities is what the current paper considers as being the Semantic Reality.

Under this assumption, the meaning of things, cannot be perceived as a stand alone, absolute, concept,
because it depends on the agent and it only makes sense in conjunction with it. One cannot ask what
the meaning of a rock is. The question itself is nonsensical. One should rather ask what the meaning of
a rock is to them. Depending on other factors too, like size, material, quality, one can hunt with a rock,
can injure oneself or someone else with it, one can use it in a construction, polish it into a decoration,
et cetera, a plethora of variations that trigger different potential actions or emotions and which have
the capability to enrich the connection between the person and the rock with meaning.

But what does a rock mean to a computer? Absolutely nothing. The computer does not have any
capability to perceive or perform actions on, or because of a rock, and so we cannot talk about any
process of comprehending or understanding with regards to the computer and the rock. One could

9 An umbrella term covering entities that can perform activities in a voluntary or pseudo voluntary manner. The best
example for this are humans, but this concept is also starting to encompass objects like robots, computers, or other
complex machines that can operate on and with the surrounding environment.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 19

argue though that a computer can be destroyed by a rock, so there is a semantical connection between
the two, but this would be profoundly misleading. The semantical connection does not exist between
the rock and the computer. This semantical connection is one, between the conjunction of the
computer and the rock as object of the meaning, and the person that states the scenario as subject of
the meaning, not between the rock and the computer.

The semantic reality of computer applications reside in the code, as a mechanism for action and data
as object of meaning, on which the pre-programmed specific actions can be performed on an
autonomous manner. It is important to consider this semantic reality conservatively. Performing
certain actions autonomously does not mean full autonomy. Computers will not start acting on their
own and possess free will, but there are many processes that can be automated, and that would provide
enormous benefits to the industry in terms of cost, quality and security.

example: 15, Unit of measurement semantics

– both the concept of meter (m) and the concept of foot (ft) exist and they are universally
accepted

– they are both distances or length (hence interchangeable) and that

– (m) = 0.3048 * (ft)

For example if units of measurement were to be considered universal primitive concepts, with terms
like “meter” (m) and “foot” (ft) being in the collective reality and there existed an equivalence formula
like in example: 15, a computer program can be written to find this correlation and provide (meter) to
an operation that requires (meter) but is being provided values in (foot)s. An inference path exists
between the two concepts and as such the aforementioned units and the associated activity represent a
semantically rich fragment of the application's reality.

This may seem like very poor performance in human terms, but in terms of current programming
techniques this could be an enormous step forward. A great deal of the code an application needs,
deals with low level data validation, data integrity checks, consistency checks, as well as data access
policy enforcement. Collectively, these represent a highly critical aspect of applications because they
are responsible for most dangerous bugs, failures, loss of information through data hierarchy
corruption, and security breaches. Consequently great resources (time, work and money) are dedicated
to this aspect but even so, due to the enormous complexities associated, fast pace of changing needs
and often lack of sufficient expertise, the results fall short of the expectations.

1.4.6 ∘ Object Oriented. The All In One Model

In a paper that was to appear in the Encyclopedia of Microcomputers (Chenho Kung, 1991) defines
object oriented programming as:

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 21

"The object-oriented (OO) paradigm is a new approach for software development. In this
paradigm, the real world is viewed as consisting of autonomous, concurrent objects
interacting with each other. Each object has its own states and behavior, resembling their
counterparts in the real world."
quote: 1, Chengo Kung, 1991

This twenty years old definition, which still very accurately defines the modern object oriented
programming ideology, clearly emphasizes the technology's unique perspective towards software units:
as self contained objects, that have characteristics, state, and means to perform actions. One of the
principle paradigms of the technology, encapsulation, explains how these elements fit together creating
black box like items, which have very clearly defined interfaces to show to the public but which hide
inside all the inner workings, that are not essential to see when the objects are used. By doing so,
clutter is reduced, making the code easy to navigate, understand and used. Other paradigms like
inheritance by ways of which objects can inherit capabilities and characteristics from more abstract
objects greatly facilitates the reuse of code and its portability.

But the object oriented technology is not at all concerned with meaning. These objects that are
supposed to mimic the real world objects, have in fact only marginal resemblance to their real
counterparts. The paradigms of OO do not enforce at all any strictness with regards to reality but
rather only the principles of modeling code in a certain type of way, which greatly increases coding
efficiency.

example: 16, Encapsulation of state and behavior in object oriented programming

Book{
String title;
String author;
Date chekOutDate;
int durationDays;
String borrower;
// -----
void chekOut(String borrower, int durationDays);
void checkIn();
String getTitle();
…

}

Library{
Book[] books;
// -----
void checkOut(Book book, String borrower, int durationDays);

}

The class Book in example: 16 encapsulates functionalities and attributes of a library book and it
makes a lot of sense to endow it with the capability to check itself out from the library in the name of
a borrower and even to store within, the details of the borrowing. Of course, in the real world, books
don't check themselves out of the library, such a thing is not within the capabilities of a real book and
it would be severely counterproductive to store the details of the borrowing in the book itself, as they
would be unavailable unless one actually had the book, which is not the case when one lends
something. As such, it would make a lot more sense to endow the library with the capability to check
out books but if we think about it for a second, this is not real either. Both approaches are just ways to
abstract activities and group them so that they would be intuitive to use, portable and easy to reuse. It
is really at the subjective opinion of a developer to decide which method is optimal for the given
situation.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 21

This is not to say that Object Oriented Programming and the object oriented model are not good, but
just as well, it is a fallacy to consider that this efficient model of programming is suitable for every
kind of information manipulation. Yet as pure object oriented programing languages are becoming
more and more frequent, the boundary between objects that “do stuff” and objects that “describe stuff”
has almost completely disappeared.

This blurring of the two aspects stems in the natural desire of developers to benefit from the various
efficiencies object oriented programming offers for certain situation. Objects that “do stuff”, active
object so to speak, perform their job by ways of methods, code encapsulated into their construction.
This code, which can add up from thousands to millions of lines of code in an application has been the
major focus of attention when it came to optimizing, for it represents the vast majority of the
development effort. As such, any optimization in portability or re-usability brought considerable
reductions in cost. By contrast, objects that “describe stuff”10 represent only a tiny fraction of the code.
So small that we cannot even talk about optimizing this layer with regards to implementation time.

The problem with this approach is that lately portability of the types that “describe stuff” has become
more and more important and the subjectivity of the developers and client needs, that are inherently
embedded in these types by the OO model are in sharp contradiction with the need for their universal
acceptance.

Another enormous impediment in information portability and freedom that is inherently built into the
OO model is the way it models relations. The common practice in OO programing is to embed the
relation, be that [1 - n], or [m - n] into the construction of the type itself. While this may bring some
benefit in working with these objects from code portability it probably represents the apogee of
inflexibility with regards to information portability:

example: 17, Relation representing books belonging to a library

Library{
...
List getBooks();
...

}

If any new relation needs to be added to the type definition hierarchy, it requires changing the type
itself, which in the best case requires modification of at least one type at source code level,
recompilation, redeploy and restart of the application. As such, a type can never acquire universal
acceptance because there will always be particular needs for particular relations, even if the type itself
is universally standard. Such particularity keep types in the constant and total chaos of subjectivity.

1.4.7 ∘ Comparison With The Relational Model

The way individual complex types are structured in the relational model is very similar to the object
oriented model with two the major differences.

Object oriented model allows inheritance of properties and abstraction of types, whereas in the
relational model all components of the structure are redefined. As such, the area of a circle as defined
in the “Circle” type has nothing to do with the area of a square as defined in the “Square” type.
Consequently, there is a lot of redundant terminology that can be confusing to a developer because the
human mind, will constantly try to associate the two, as they have common semantics.

10 In OO, representing only the part of the type that defines the attributes of the object and none of the methods. The
methods are part of what objects do.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 23

The second major difference that the relational model has relative to the OO model, is that it sees the
relations between types as a separate concept, unrelated to the types themselves. In fact it doesn't
really take any sides between types and relations as both are considered relations. This characteristics
gives greater flexibility to the data model, because the addition of a relation, which can occur later on
in the use of the application, does not change the structure of the types. They can be added as needed
throughout the lifetime of the application. This flexibility and the simplicity of the model allowed for
extremely good standardization, which makes the relational model and the relational databases
extremely successful to these days.

With object oriented development becoming more and more prevalent due to its efficiency of code
reuse, changing the minds of developers into thinking more are more in terms of objects, there is a
rising confusion in the field of data manipulation. Storing data in one model and manipulating it in a
different one, especially when the difference between the two are significant, needs a lot of overhead
work. A separate layer needs to be created to transform back and forth the data structure as well as the
searching criteria, which sometimes can prove very difficult. Additionally, the difference in the way
the two models conceptually encode information inevitably gives rise to a lot of conceptual conflict as
well, and different developers see the transition between the two in different way.

To simplify this, some advocate the creation of object-oriented databases, which would do away with
the overhead of coding and the conflict of ideologies, because in the object model, both, members of
complex types (structures) and the relation are reusable via inheritance. By wrapping both members
and relations under the same umbrella, the object model, allow easy implementation of programming
operations like deep comparison, deep copy or deep deletion, operations that can potentially create a
lot of data inconsistency and programming overhead in relational systems which do not necessarily
enforce these dependencies.

But the subjectivity of structures associated with the object model and the rigidity created by wrapping
relations into the types have taken their toll on the standardization and portability of the model. Object
databases are by far less versatile and as such there are many different implementation that found their
way only into niche applications.

The legacy of both these major data models is that they originate in an era when applications were not
meant to communicate with each other. The vast majority of applications resided at most on a local
area network or a virtual private network serving one business or one cohesive group of consumers.
This meant that the abstraction of data, the pattern created to capture information into it's meaning
free form did not intersect with the property of subjectivity. It was as if individuals, observed
information from their own particular points of view and little did it matter that other individuals
observe the same information but from an alternate subjective angle. Information losses associated
with the abstraction of information could easily be factored in from the beginning. Because of this,
information, had that absolute character data has. The two, information and data, were conceptually
almost interchangeable as the abstractor was the same with the consumer. Whatever wasn't encoded
into the data, was in the head of that who encoded it, who in the end was also responsible with
decoding it. This simplification however can only exist under the premise of the lack of subjectivity.

But not so long ago came a time when applications started to break the barrier of individualism and
transfer of information (not data) started to become more and more important in the information
industry. This however proved a very difficult nut to crack because the moment this need arose, the
encoded information lost its absolute character and encoded information suddenly became what it
really is: data and not information. But the industry continued to treat it as if nothing had happened
and attempted to apply to information, everything that learned and developed for data.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 23

1.4.8 ∘ Web Services, The XML Promise

Shortly after the XML standard has been released, a plethora of communication related technologies
appeared that were based on it: XML RPC, XSD, WSDL, UDDI. There was great optimism following
the release around year 2000 and the industry envisioned a world in which computer to computer
communication would soon become commonplace enabled by such technologies.

But in spite of their effectiveness in structuring information, the enormous number of business
supporting them and unprecedented consensus with regards to the direction of technology, these
standards failed to deliver that promise. The reason why, has nothing to do with structure and
everything to do with how meaning is seen in the world of computation.

◊ X M L

The Extensible Markup Language (XML) appeared out of the necessity to be able to exchange richly
structured documents over the web, akin to HTML, which was too rigid for this purpose, having
predefined tags and as such being limited to a certain kind of data. The general structure of an XML is
very similar to the HTML counterpart example: 18.

example: 18, Person structured in an xml file

<Person>
<PID>pidvalue</PID>
<name>John Doe</name>
<address>

<street>Elm Street</street>
<number>1234567<number>
<country>Nowhere</country>

</address>
...

</Person>

As opposed to HTML, XML can encode virtually any kind of information, because the tags are not
standardized. XML however, was never meant to carry any semantics. In an article, A Technical
Introduction to XML (Walsh Norman, 1997) was writing:

“XML specifies neither semantics nor a tag set. In fact XML is really a meta-language for
describing markup languages. In other words, XML provides a facility to define tags and
the structural relationships between them. Since there's no predefined tag set, there can't be
any preconceived semantics. All of the semantics of an XML document will either be
defined by the applications that process them or by stylesheets.”
quote: 2, Walsh Norman, 1997

Owing to this absolute freedom for structuring there is no way to tell what actually is encoded in the
XML itself. In an XML, the tag <name> does not mean anything; it could just as easily be <eman>11

or anything else. This meant that there was no way for two applications to exchange information this
way unless they agreed to rigid structures by ways of which they encoded and decoded the
information. To put an end to the confusion and to allow a more general use to the XML, the XSD
standard was defined, which is in turn an XML structure meant to standardize definitions in XML
format.

11 Name written backwards

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 25

◊ X S D

Published in 2001, the XML Schema Definition (SXD) is a schema language which allows for the
definition of restrictions in the structure of XML documents such that there could be some general
common ground in the definition of types during information interchange via the web. Being specially
thought up with type definition in perspective, the XSD standard also defines the basic data akin to
most programming languages: String, decimal, dateTime, time, float, double, etc. (19 total) and XML
schema elements that allow for construction of structured types, example: 19, like Person or Address
from example: 18.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 25

example: 19, XSD schema example

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Address">
<xs:complexType>

<xs:sequence>
<xs:element name="Recipient" type="xs:string" />
<xs:element name="House" type="xs:string" />
<xs:element name="Street" type="xs:string" />
<xs:element name="Town" type="xs:string" />
<xs:element name="County" type="xs:string" minOccurs="0" />
<xs:element name="PostCode" type="xs:string" />
<xs:element name="Country" minOccurs="0">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="IN" />
<xs:enumeration value="DE" />
<xs:enumeration value="ES" />
<xs:enumeration value="UK" />
<xs:enumeration value="US" />

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Unfortunately this additional layer of structuring still doesn't bring types closer to containing any
universally evident meaning. With all the effort that was put into it, the XSD only brought the global
data type definition to the point where all the programming languages already were, with the added
benefit that this time there were no programming language dependencies and the definition language is
universally accepted.

◊ X M L - R P C , W E B S E R V I C E S A N D T H E U D D I

XML – RPC stands for (XML encoded Remote Procedure Call) which is a way of invoking functions
(methods) in an application from a remote location.

There are obvious complications with invoking methods remotely, the most obvious ones being that
the remote machine does not have access to local pointers, stack, memory, type definitions, and so on,
so an RPC mechanism is designed to encode all necessary information into a network message on the
consumer, transmit it to the provider, decode it, interpret it by matching it to a local call, obtain a
result if necessary, encode it and send it back to the consumer. These providers have become known
in the modern networking systems as Web Services, and are very similar to the concept of the object
in OO development, comprising a set of functions that can be invoked by potential consumers, but in
this case, over a network.

Abstracting from the intricacies of the implementation of RPC systems it can be seen that together
with WSDL (Web Service Definition Language) it is in fact a standardized definition of the concept of
interface as understood by most object oriented developers (a definition of functions that must be
coded into all classes declaring / inheriting that interface). just as in the case of XSD the definition of
these Web Services (objects serving over the web) is independent of any specific programming
language.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Information in Computer Programming 27

This independence from programming languages of both type definition and interface definition gave
great hope to the IT industry with regards to automating communication between software
applications (business to business or B2B). The UDDI (Universal Description Discovery and
Integration) registry was supposed to contain a vast collection of such interfaces, published by
businesses, and as such all businesses could potentially interconnect and exchange information,
example: 20.

example: 20, Accommodation search automation

An application could consult a UDDI and automatically discover all applications that offer room for rent
at “Destination XYZ”, and consult whether they conform to certain criteria: star category, price range,
etc.

The reality proved different, in spite of unprecedented support from all major players in the industry.
By 2010 most of them were retracting support due to lack of interest and adoption and the concept of
UDDI was dead.

1.4.9 ∘ Why These Standards Fail To Deliver

The simple answer is, they did not. They delivered exactly what they were supposed to. They defined a
platform independent framework that technically allow any two software to invoke methods on each
other and exchange data based on a common definition. It was the expectations that were
unreasonable.

The industry expected that creating a platform independent structuring infrastructure could solve the
communication problem by allowing the definition of common types. But the desire to do so was not
taken into consideration. The wide acceptance of these common definitions were impossible because
there is no such thing as common definition. There only is a common framework to create these
definitions and these frameworks suffers from the same problem as the type system in each individual
programming language: the lack of computational semantics.

Being able to define data in a platform independent manner does not magically transform data into
information. It does allow the transfer of data over the Internet as opposed to having it locally but
beyond that, putting it into context, interpreting it, was still the job of the operator. No steps have
been made towards the preservation of meaning during the encoding process, meaning which could
potentially be transferred together with the data.

All these type systems concentrate on standardizing the way information is represented, not what
information is. The primitive (most basic elements) are very basic representation systems that can
partially encode various computer primitive concepts like integer or boolean onto machine language.
This is essential, because ultimately information does need to be encoded, but not sufficient. The
system jumps from these primitives directly to structures, the elements of which are either structures
themselves or primitives. There are no intermediary types, primitives that can also carry some
meaning, not only representation. If a member of a structure is a “string” that structure cannot be
standardized, because a string can be anything, and anything is just not standard in terms of
computational potential. As such, an application cannot test on its own, or more precisely, one cannot
build an application that can test in an automated manner what an input or output parameter is.

example: 20 might have seen a little misplaced, because hotel accommodation search and booking is
one of the very few niches that managed to standardize its communication. This however, is not
because seamless communication exists, but because of an arduous and very difficult standardization
campaign. All hotels that conform to the standard must implement rigorous proprietary middlemen

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 27

APIs that can make the connection between booking, hotel and the browser. If a hotel wants or needs
to conform to more than one middlemen (in order to reach more clients) the developers of the hotel's
application need to implement all APIs. There is no UDDI like system and even if it were it is still the
developer's mind, that needs to read the documentation, see the types, make the connection, and
implement information exchange. There is no information in the applications, the information is only
with the developer or hotel personnel or consumer.

This lack of common semantics, the rigidity of the data model and the subjective perspectives of many
different groups of businesses resulted in the creation of many disparate type hierarchies that are
essentially incompatible outside groups. If a concept / a property is added to a structure the entire
structure needs to be changed leading to continuous redefinition of the types and impossibility to
having a stable basis for communication. Changing these types means that types need to be backward
compatible, somebody needs to maintain a record of the types and their versions and at the same time
enforce their proper usage. Because such things are impractical, applications, usually sooner rather
than later, need to be updated to using the latest types or they become outdated and incompatible with
the rest of the applications in the market, leading to the breakdown of the communication system.

The inflexibility of this holistic model is a major impediment in the domain of communication, at
information level, within software applications. The massive amount of work that needs to be
continuously invested means not only extra cost in development, but also a lot of superficial
implementation, countless bugs, incompatibilities and major security vulnerabilities.

1 .5 ∘ Semant i c Web And RDF /OWL Onto log ies

As a response to the lack of meaning in these API based communication systems, which was observed
quite early in the development of the Internet, a new standard started to emerge.

The Semantic Web was coined in 1999, around the same time as the B2B and is defined as:

“a web of data that can be processed directly and indirectly by machines.”
quote: 3, Tim Berners-Lee

by the inventor of the World Wide Web, Tim Berners-Lee and it was / is suppose to revolutionize
information search over the Internet (hence the moniker Web 3.0). To achieve this, frameworks have
been created like RDF (resource description framework) and OWL (Web Ontology Language) that
can be used to create semantically charged data that can be published over the web. These are
necessary because computers cannot process natural language for their content and searches are based
on keyword matching and different tricks which don't yield results as expected. Similarly to the B2B
promise, the Semantic Web promises a world in which machines can automatically process
information on the web and return meaningful answers, not just answers matched by character
comparison.

Unfortunately, the structuring trend is so prevalent in the IT discipline that even developers of
semantic web, fall into the same trap of defining terms that are only humanly intelligible. Frameworks
like RDF and OWL are by nature the same structuring languages that allow definition of types and
type hierarchies (ontologies in this case), as seen in the case of XSD. The difference is, that in the
case of ontologies, the types are supposed to carry semantic charge because the model puts some
emphasis on the terminology and the relation between elements.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Semantic Web and RDF/OWL ontologies 29

It will be shown later in the work how this semantic charge it is in fact impossible to achieve the way
the ontologies are constructed today.

The body of people, that create such ontologies, are responsible to embed these semantic information
into the ontology in such way that machines can automatically make use of it. Unfortunately, the
misconception seems to be present, that terms and relations alone, actually hold the semantics
associated with the object. Evidently, when humans look at these terms and relations they all make
sense, but they make sense in the observers intellect not necessarily within applications. In human
world, terminology is important not because it is semantic in itself, but because it links to us, to our
reality (objects, actions, et cetera), which in turn is semantic to us because we can operate with those
objects and relations.

By analogy, given a specific ontology, the semantics will not lie in the terminology and definitions
listed there; that is only semantic to humans. It will lie in what applications are able to do with that
ontology in an autonomous manner. From this angle, this linked resource model is no better in terms
of machine semantics than the classical model, using the APIs, it is just different: it does not operate
on structures and primitive types, it operates on terms, objects, types and relations between them.

1.5.1 ∘ Ontology, The Linked Data API

Because today's information systems work predominantly with data, the process of transforming this
data into information lies in the programs themselves, which together with the end-user, are putting
data into context thus transforming it into information. This is adequate for many operations but in
some cases it would be useful if information systems would be capable of transforming at least part of
the data into information and manipulate that information into creating more concise, humanly
manageable results: A web search is very good such example, where the cause for the massive amount
of inconclusive responses is a result of applications treating page content as data and not as
information. They can match text in the search, but they cannot put that text into context and so they
cannot give answers to questions but rather just statistical matching between texts.

Ontologies are frameworks that allow information, not data, to be transposed into computing
environment, in such ways that it is possible to perform an analytical information extraction process
instead of a simple statistical matching. To put it in perspective, the two representations:

example: 21

1. “John is Human” - data represented as a sequence of characters
2. “Is (John, Human)” - information stored as a proposition

In the first case a computer program is capable of finding occurrences of texts like “John” and can
respond whether the text can be found in the given source text or not, whereas in the second case, a
computer can actually observe a relation that exists between John and Human. As such, from the
standpoint of the “is” relation, the second structure is actually information, not only data.

In the world of computer science, ontologies, are information packages which can be used by a
computing system to perform context dependent operations. In this case, the context is the ontology
itself, and the information declaration is the data pool on which operations take place. To return to the
upper example, a very simplistic ontology for the proposition 2. would contain the definitions of:

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 29

example: 22

1. Human – living human being
2. Is – a relation denoting inclusion in a class or set

As such, a data package that contains the word John and the relation Is (John, Human), could tell a
computer system that whatever “John” is (or whatever the character array [J, h, o, n] stands for), it is a
Human, within the context of the Ontology. This makes the ontology the context that gives the data in
the packet information character.

The Holy Grail behind the ontology is an ontology that is generic and complete enough to serve as
context for any data that can be extracted from the human world. If that were true, there could be a
computing system that could answer virtually any question in a pertinent way, akin to artificial
intelligence, rather than just search for raw occurrences of sets of characters. Unfortunately, the
human existence is so complex that all present ontologies fail either the generic or the complete
criteria and in most cases both. This gives way to opinions and trends to emerge the result of which is
many, many, ontologies in most cases conceptually overlapping.

1.5.2 ∘ Ontology, A Concrete Example

To highlight the resemblance of the Ontology and the API models, from the perspective of outcome
and utility, let's consider an example from an existing ontology.

FOAF (Friend of a friend) is an ontology defined on RDF and OWL which aims to describe people
and relations within the context of the Internet, on-line presence. It defines a hierarchy of types which
can be complex or simple and are connected between them via properties and relations:

example: 23, Snipet from FOAF Ontotlogy

Class: foaf:Image
Class: foaf:OnlineAccount
Class: foaf:OnlineGamingAccount (Subclass Of: Online Account)
...
Property: foaf:mbox_sha1sum
Property: foaf:msnChatID
Property: foaf:lastName
Property: foaf:account (Range: every value of this property is a Online Account)
...

The semantic charge, however, from a computer's point of view, is similar or identical in nature to
other classical APIs, modelled in XSD or UML (unified modeling language). This is not a problem of
RDF or OWL languages, but rather a problem born from the way the industry sees data modeling:
abstracting a slice of reality into a custom, proprietary model.

FOAF grabs a piece of reality, that of people and the web, disjoints it conceptually from all the rest of
reality and attempts to represent it in such way that applications can make sens of it without the aid of
humans. Applications that are specifically built to interpret FOAF will undoubtedly be capable of
interpreting FOAF and give their users relevant response within the realm of FOAF reality, but this is
no different that any other application implementing any other API. Aside from that, any other
application that is not strictly designed to conform to the types defined in the FOAF ontology will be
incapable to interpret any result. Why this is, has to do with the reliance of the ontology on humans to
interpret it. There is no consistency in naming, real continuity between types and no link to a larger
reality (ontology) to which references are made via suggestive naming and explanation
(documentation).

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Semantic Web and RDF/OWL ontologies 31

The “OnlineGamingAccount” in example: 23 is a derivative of the “OnlineAccount”, which in turn is
a derivative of “Thing” in the FOAF ontology. While the text in the description of the these types
make complete sense to a person, from a computer's perspective it could be anything. In order for a
computer to be capable to perform any operations with a foaf:OnlineGamingAccount, in an
automated fashion, the computer has to have some operations defined that take it as input and some
mechanism that trigger an automated reaction. If it does not have such an operation, it should at least
be capable of doing something with foaf:OnlineAccount. If neither of these are implemented (hard
coded) to take these very types as input no operation can be performed because there is no other
computationally intelligible information related with the type. These are self contained types, they
either make sense on their own (operations exist) or they don't. They are completely disjoint from the
reality (the human reality) from where they originate.

A person on the other hand is capable to derive lots of information from the simple name
“OnlineGamingAccount”. Although the designation is merged into a single word distorting slightly the
meaning this way, it is sufficiently similar to “on-line gaming account” so that a person can deduce
that this is what the type is about. The person, can immediately draw the conclusion that it is:

• an account, something representing him or her or another person

• on-line, in the on-line world (Internet)

the upper two, hint towards a plethora of collateral information: people log in with these
account, they have a profile, information accumulates into these accounts, actions can be
performed with the information and so on....

• it has to do with gaming, as in play, fun, and so on and so forth...

None of these distinct concepts (account, on-line or gaming) are defined in the FOAF ontology. It is
either an foaf:OnlineGamingAccount, an foaf:OnlineAccount or nothing at all and as such, a
computer built around the foaf ontology cannot draw any additional information from an object of this
type. There is simply no reality behind these types within the ontology.

What is worse is that the ontology is organizationally controlled: The concept
“foaf:OnlineGamingAccount” is the property of somebody. The term “xyz:OnlineGamingAccount”
could be the property of somebody else, who might chose (not that they will, but the possibility exists)
to define it in terms of carrots and potatoes rather than gaming and on-line. The example might be
exaggerated, but it is meant to show that such terminology has nothing to do with reality, or a reality.
They are proprietary terms used by particular organizations who presume that the entire world will
conform to the standard and thus enable seamless communication within that particular sector. The
very concept of Ontology is slightly misplaced as it implies knowledge about a slice of reality. In
human world an ontology is usually a small segregated part from the global reality, which is particular
to a group of people and it only emphasizing the particularities of that group of people within the
context of this global reality. In IT, ontologies are defined outside the context of this general reality,
which continues to exist only in the human world. This segregationist view is very akin to an API,
containing a proprietary type hierarchy that can be used for information interchange but only if the
ones doing the interchange are sufficiently aware of the context to recreate information from data,
because at the root that is what is being interchanged. For anybody else, putting reality together from
these separate ontologies will inevitably lead to confusion, double definitions, subjectivity, conflict of
interest and all the other problems of the classical APIs.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 31

Ontologies need to emerge naturally from custom needs for various groups of people and it is the
more basic, general world that needs to be coined. As long as the way of creating them stays as it
currently is, these ontologies cannot bring the awaited revolution because people will never be
interested or be able to using it. For example, the specification describing the FOAF (Dan Brickley,
Libby Miller, 2010) is so long, that no human will be enticed to read and learn it just to be able to say
a few words about themselves in the new semantic web. It is many times longer than the semantic
meaning (dictionary definition) of the objects that it defines, and it represents only an insignificantly
tiny fraction of the knowledgeable information within human reality. If all knowledge would be
standardized like this, it would become an unreadable document. If the alternative method is
presumed, that an application will help the humans to create these files, then we have to assume that in
a complete Web 3.0 environment humans will be using thousands of custom made applications
designed particularly for each ontology that will exists out there, which is just as unreasonable.

In either case, it is not likely that the current approach will be able to yield any real results outside
small scale studies or strict lab conditions.

1.5.3 ∘ Upper Ontologies

Because the ontologies are the contexts that give data information character, the representation of data
must adhere to the ontology or it cannot be observed, even if the information stored within the data
would otherwise be sensible. To allow for interoperability between ontologies, the concept of upper
ontology was defined which aims to connect ontologies and therefor allowing for translation between
definitions from one ontology to the other.

Suppose we have ontology O consisting of the terms from example: 22, and ontology O', defining the
same concept in a slightly different way, example: 24.

example: 24,

1. Homo Sapiens – living human being
2. Belongs To – a relation denoting inclusion in a class or set

The proposition Is(John, Human), defined in the context of Ontology O, would not make any sense
within the context of Ontology O'. The fact that the reader is capable of recognizing the similarity and
hence the value of truth of the proposition within the context of the O' ontology is result of the fact
that the reader possess a larger context (ontology) in which there exists an equivalence between the
terms defined in the two ontologies, but a computer simply cannot.

example: 25, Concept equivalence

1. Equivalent To – denoting equivalence rule between concepts
2. Equivalent To(Belongs To, Is) – concept equivalence definitions
3. Equivalent To(Homo Sapiens, Human) – concept equivalence definitions

example: 25, is what an upper ontology (UO) stands for. With it in place, a computing system
operating within the context O and UO should be able to make sense of a piece of data defined in O'.

It is important to observe the power behind the concept of an upper ontology, in allowing the creation
of equivalence between data definitions. If there wasn't an upper ontology UO, in order to state the
same information under both O and O', we would have two distinct data sets, which would yield two
different information sets under two different ontologies. There would be no way to recognize that

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Semantic Web and RDF/OWL ontologies 33

there is an equivalence between the two information. They would be segregated forever each in its own
context, but with the upper ontology in place, not only can the computer recognize information from a
different (foreign) ontology, it can also tell that the information is equivalent.

1.5.4 ∘ The Ontology Maze

Unfortunately the complication with ontologies does not end with the appearance of the upper
ontologies. The human knowledge system seems to be too complicated for any one upper ontology, or
the opinions on how to build them part, so instead of one, many upper ontology systems exist, each of
them with its own particular knowledge representation and knowledge base. Let us see the
methodology of some of the most renowned ones briefly.

◊ C Y C

The Cyc Ontology is a proprietary ontology developed by Cycorp Inc. The Cyc ontology is claimed to
be “universal” meaning that it can accommodate any concept regardless of context through a three
layer ontology system “upper”, “middle” and “lower”. The upper layer contains the more generic,
broad and highly structural concepts, such as temporality, dimensionality, relationship types, etc. the
middle layer, which contains widely used concepts, generalities and the lower layer contains leaf level
knowledge, in other work specifics. Each level ties into the definitions from the higher level through
rules(An Introduction to the Syntax and Content of Cyci).

Each element is considered to be a Cyc constant and is defined as:

#$ConstantName
comment text in natural language, …

isa: a list of representative sets whose member #$ConstantName is
genls: a list of representative sets whose subset #$ConstantName is, if any*

* genls, will only be specified for concepts that are collections denoted by their connection through an
isa chain to the concept #$Collection.

The Knowledge, the facts, are represented in Cyc via the predicative logic concept, throught Cyc
#$Relations, like Predicates and Functions.

Predicates are logical relations that can be thought of as functions that return true or false, and their
definition contains the additional description of the parameters they accept. For instance in the case of
a binary relation:

#$mother: <Animal><FemaleAnimal>

which denotes that the predicate #$mother takes two parameters the first of which must be a member
of the #$Animal collection and the second that of #$FemaleAnimal collection. Just as in the case of
constants explanation is given in natural language to avoid confusion.

As an important side note is that the natural language explanation is not part of the Knowledge Base
as a computation tool. It does not aid the computer program working with Cyc, but rather the
developer of the computer programs or that of the ontology.

Additionally, Cyc also defines functions, which are constructs that receive parameters, like in the case
of predicates and return results other than true or false:

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 33

#$ FemaleFn: <OrganismClassificationType>
comment text in natural language, …

isa: #$CollectionDenotingFunction
arg1Genl: #$Animal
resultIsa: #$ExistingObjectType
arg1Genl: #$FemaleAnimal

The Cyc ontology is self referential similarly to mathematics. All constants and terminology are on
higher level definitions which in turn are rooted in the upper layer axiomatic definitions. It defines over
5,000,000 assertions between approximately a 500,000 constants (concepts) out of which
approximately 26,000 predicate constructs(ResearchCyc).

◊ U M B E L

The Upper Mapping and Binding Exchange Layer (UMBEL), is a subset of the OpenCyc provided in
an RDF (Resource Definition Framework) Ontology and according to the creator it is designed to
facilitate content interoperability on the Internet.

UMBEL vocabulary is structured around three root classes, and 38 root properties. In addition it
employs external vocabularies such as RDF and SKOS. UMBEL definitions follow the pattern (Upper
Mapping and Binding Exchange Layer (UMBEL) Specification):

Class name - umbel:RefConcept
Description - Distinct subsets of broadly understood concepts ...
in-domain-of - umbel:isRelatedTo, skos:prefLabel, skos:altLabel, skos:hiddenLabel,
skos:definition
in-range-of - umbel:isAbout, umbel:correspondsTo
Sub-class-of - skos:Concept

The base classes consist of umbel:RefConcept, umbel:SuperType and umbel:Qualifier, and the
properties: umbel:correspondsTo, umbel:isAbout, umbel:isRelatedTo, umbel:relatesToXXX (31
variants like: relatesToSubstance, relatesToEarth, relatesToHeavens, …, relatesToFinanceEconomy,
…, etc.), umbel:isLike, umbel:hasMapping, umbel:hasCharacteristic, umbel:isCharacteristicOf, each
accompanied by definition and specific annotations.

The Reference Concepts, are drawn from the OpenCyc librarary which consists of approximately
28,000 Concepts and are divided into 33 mostly disjointed Super Types.

UMBEL's hierarchy is similar to Cyc, but because it emphasize interconnection, it consists only of
taxonomy: definition of the classes and relationship between them. UMBEL does not contain
relationship between instances (assertions) as it is not a knowledge base but rather a reference
ontology meant to provide support for interconnecting disparate ontologies.

The in-domain-of and in-range-of sections list the properties, defined in some external ontologies, that
can be used to describe that subject concept and a continuous effort is being made to tie existing
ontologies into UMBEL.

◊ B F O

Basic Formal Ontology is a different ontology maintained by IFOMIS (The Institute for Formal
Ontology and Medical Information Science) and it consists of a series of sub ontologies divided into 2
broad categories: continuant (SNAP) or snapshot ontologies encompassing a snapshot of ontologies

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Semantic Web and RDF/OWL ontologies 35

describing concepts that endure through time (time invariant), and occurent (SPAN) encompassing
ontologies describing processes that have a time dimensionality(SPATIAL COGNITION AND
COMPUTATION).

As part of the ontology, BFO employs Logic Programming, namely predicative logic, to define
connections between the concepts it defines. These connections (predicates) are also divided into the
two major categories: there exist SNAP predicates and SPAN predicates. As a major criteria is that
relations never span across the both domains: they are either SNAP or SPAN. For example the
part(…) relation exist for both SNAP and SPAN but the parameters that they take will only be from
one category: a leg, is part of a person and childhood is part of life. BFO does not allow the leg to be
part of the life.

As a second baseline differentiation, BFO divides concepts into two categories: Universals and
Particulars. Universals stand for the broad categories such as Types, Species, Classes, and
Particulars stand for individual representatives of these. If Homo Sapiens is a Universal, than an
individual human being would be a particular (Ontology for the Twenty First Century: An
Introduction with Recommendations):

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 35

➢ Continuant

➢ Independent continuant

➢ Site
➢ Object
➢ Fiat part of object
➢ Boundary of object
➢ Aggregate of Object

➢ Dependent continuant

➢ Quality
➢ Realizable entity

➢ Function
➢ Role
➢ disposition

➢ Spatial region

➢ 3D (volume)
➢ 2D (surface)
➢ 1D (line)
➢ 0D (point)

➢ Occurrent

➢ Temporal region,
➢ Spatio-temporal region
➢ Processual entity
➢ Process

➢ Process Aggregate
➢ Fiat part of Process
➢ Processual context
➢ Boundary of a process

BFO defines a total of 36 classes connected vertically via the is_a relation. Additionally to these
classes BFO also defines a series of primitive relations between these classes:

• Constituent: Entity ⨉ Ontology

• Part: Entity ⨉ Entity

• InhersIn: SnapDependent ⨉ Substantial

• TemporalLocation: SpanEntity ⨉ TimeRegion

• Exists-At: SnapEntity ⨉ TimeInstance

• TemporalIndex: Ontology ⨉ TimeRegion

• SpatialLocation: SnapEntity ⨉ SpaceRegion

• TemporalLocation: SpanEntity ⨉ SpacetimeRegion

• ParticipatesIn: Substantial ⨉ Processual

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Semantic Web and RDF/OWL ontologies 37

1.5.5 ∘ Some Comparative Aspects

A few comparative aspects have been picked which may be key in the easy of adoption
(understanding, development, extending) from both computational aspect and human perspective.

Cyc UMBEL BFO

Directionality Vertical Hierarchy,
multiple ancestor
permitted. Horizontal
connections via functions
& predicates

Strict vertical divergence
via type hierarchy.
Horizontal connections
via properties

Strictly diverging vertical
Hierarchy via Is_a relation.
Horizontal connections between
certain predicates. (Domain
constraints may apply)

Grammar Predicate Logic,
Functional Programming

Predicate logic
(relations)

Predicate logic (relations)

Constraints Very few. 3 layers, lower
layers tie coherently into
upper layers

Taxonomy only Conceptual differentiation
between time dependent and
time independent concepts,
universal and particulars,
dependent and independent.

Base

Vocabulary

500K concepts, 26K
relations

3 root classes & 38
properties

36 Classes

Definitions 5M assertions 28000 concepts grouped
in 33 mostly disjoint
supertypes

36 Classes

Form of
Definitions

Agglutinated Natural
Language words (in
CamelCase)

Agglutinated Natural
Language words (in
CamelCase)

Agglutinated Natural Language
words (in CamelCase)

Language CycL, OWL RDF, OWL OWL

The widest adoption is enjoyed by BFO(Basic Formal Ontology Users)(UMBEL Projects), which it
can be seen, is the simplest most restrictive of all. Although grammatically the restrictions represent
limitations, from the human perspective they are easy to understand and potentially boost the capacity
of developers to build quality ontologies based upon it. It is flexibility versus adoptability: while 15K
relations give one the flexibility to connect concepts in an extremely complex manner it also pose an
enormous obstacle in finding the appropriate relations for reuse, avoiding double definition for
relations, and preserving consistency across the domain.

Specifically, terminology invention (see: 2.1.3 simplicity & Familiarity), which is a characteristic of all
ontologies (both upper and lower) poses a great barrier in their adoption. The sheer volume of the
invented term, which range from thousands to hundreds of thousands, makes them impossible to
remember and in some cases even impossible to found should a person even have the intention of
finding them.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 37

1.5.6 ∘ The Demotion Of Upper Ontologies

The use of upper ontology systems in binding disparate lower ontologies together is a commendable
effort that has the potential to improve interoperability in the domain of knowledge representation and
information manipulation. But in spite of the major efforts that have been put into their adoption
remains strictly in the boundaries of isolated projects. On the other hand, if the power of the semantic
web lies in the adoption of the concepts than perhaps a simpler system, which may not allow full
representation of human reality, could do more for the semantic web than the complex ones that claim
to be able to do so.

The moment dissensions entered into the world of upper ontologies and multiple variations of them
appeared, marks the moment of downgrading such ontologies to the rank of ontologies. Similarly as
Cyc has different layers so are these ontologies to a certain degree above a subset of other ontologies,
but relative to other so called upper ontologies they are in fact parallel and therefore have no
structuring power over them. Application designed for an upper ontology might be able to handle sub
ontologies, but they will not be able to explore ontologies on the same level.

As such it is really inappropriate of talking about an upper ontology in the same sense as reality
around us is relative to our understanding. Our reality is one, we can always count on it to be one, we
can measure against it because it is absolute12. It's existence does not depend on who observes it, only
the information collected from it changes. A true upper ontology should not depend on predefined
hierarchies, but rather only on universally acceptable truths. An upper ontology should be unique and
universally objective.

1 .6 ∘ Fra c tu red Rea l i t i e s

The current mainstream approach in the creation of either APIs or Ontologies is for an organization to
take charge and create a set of types, terms, connections, anything involved in the specific definition
and then push it out to the community to use. As part of the contract, the organization gets to put the
collection of type, terms, etc. under its own brand and be the sole governor of the package (like
foaf:OnlineGamingAccount). But given the nature of information, it is both presumptuous and naïve
to believe that the industry will have the will or even the interest to simply concede to adopting such
API or Ontology, and for numerous good reasons:

Businesses might simply not like the fact that somebody else dictates the direction of an API /
Ontology because it is a major risk from a business standpoint. What if extra features are needed in
the future and the governing organization is not willing or is unable to include them. What if they will
start charging for it. What if the descriptions become inaccessible due to network outages at the
governing organization, etc.

What if in the multitude of APIs / Ontologies a business simply does not find what it needs. In an
ontology based web 3.0 we have to assume that thousands of such ontologies will exist. Even if they
are all registered in a common library, even if we assume perfect harmony between such ontologies,
absolute discipline in their usage and total backward compatibility, it would still be a titanic effort to
find various concepts from various ontologies, putting them together, obeying the relations between
them and their limitations, perhaps even extending some with custom particularities and then keeping

12 Changing slowly enough that the change is not uncomfortable to adapt across across the lifespan of human

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Fractured Realities 39

track of them during the lifetime of the application. On the other hand is a lot less effort to just simply
redefine whatever one needs and add it back to the common repository, a process that contributes to
making the ontology landscape ever more fractured.

Suppose several businesses do agree to use parts from such foreign API / Ontology, for example
foaf:Person, but they need to define custom ones due to business needs. Presumably they will
implement custom versions for their Person, abc:Person, bcd:Person, etc:Person, and specify
foaf:Person as ancestor class. In this situation the model is generating an inevitable fracturing of the
computing reality with regards to the concept of the Person.

In spite of the fact that abc:Person is in fact conceptually exactly the same as bcd:Person, only with
different sets of custom properties, the model does not regard them as such. They are part of two
different ontologies, and their only connection is that they both inherit foaf:Person, which conceptually
is in fact also exactly the same. It is difficult to imagine this for somebody used to work with
inheritance, but conceptually, the abc:Person and bcd:Person with respect to foaf:Person are not
derivative classes, the way Square and Circle are with respect to Geometric_Shape. But rather they are
different variations of the same class. It is the same concept from reality that is being modeled but it is
modeled so in an environment that spawns three separate concepts linked together with the relation of
inheritance. The single concept Person from human reality is transformed into computing reality into
three separate concepts fracturing the human reality behind the Person into three disparate or partially
disparate realities in the computing realm. Applications that are built on the abc ontology cannot
assume any other connection with the bcd:Person other than the fact that they have common ancestry
in foaf. In ontology language we can assert that abc:Person is same as13 bcd:Person, and vice versa,
but then the owner of abc needs to continuously monitor the world of ontologies for any future
ontology that may contain an equivalent version of the Person.

It is much more reasonable to conclude that there will be little discipline in using ontologies and a lot
of subjectivity when it comes to defining them. As a result, instead of a harmonious landscape of
interconnecting ontologies we are likely to observe ontologies that define weird terminology, that
redefine terms without referencing others, missing intermediate pieces and duplicate terminologies all
laid out in an impossibly complicated infrastructure of terms, types and connections which has
nothing to do with the homogeneous reality that the model tries to represent.

The tendency can already be observed with today's handful of ontologies, which are defined by
professional organizations that are not only specialized in the field of semantic web, they are actually
creating it. For example both Friend of Friend and Dublin Core ontology define the term Image
(foaf:Image and dcmitype:Image) and the two are not the same. An application built on Dublin Core
will not be able to interpret14 an image defined in Friend of Friend in spite of the fact that they are in
fact conceptually identical, a phenomenon that is extremely detrimental to the entire concept of
semantic web.

1.6.1 ∘ The Semantics Of Web 1.0, 2.0 & 3.0

The industry speaks about web 3.0 as the semantic web, where applications working on ontologies will
revolutionize information access based on the fact that ontologies are capable to capture a lot more,
computationally speaking, than simple document based data. Semantics however is a relative concept

13 For example “owl:sameAs” property that can be used to assert that two resource are in fact the about the same
individual.

14 Unless of course the application implements both ontologies, but that is detrimental in a different way.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Case for common reality 39

and only makes sense in conjunction with an agent, to which whatever is captured in the data is
meaningful. The content of HTML documents and that of image of the current web are fully semantic
to people. People can interpret and make sense of what is in the documents but this is not only
because they can interpret the language, it is also because whatever is in the language, links to a
complex array of facts and activities in people's reality. Ontologies may be capable to capture more
complex aspects of human information while being interpretable by machine, but this, in itself, does
not mean that they will contain any semantics from the standpoint of computers and the world wide
web.

Web 1.0 and 2.0 are not regarded as semantic by the industry and HTML hardly qualifies as ontology
in the eye of any participant. This is because we regard web semantism from human perspective: how
can the web provide us knowledgeable information, by doing the analysis and the mining on its own.

But if we are to look at this from computer perspective and not the human one, it is in fact HTML
that is the true ontology and not those defined by ontology definition frameworks. HTML is a language
that defines a remarkably simple ontology: that of documents (which may be texts, images or binary)
and the links between them. Because the semantics lie not in the representation, but in what the
system can autonomously do with what is represented, this utterly simple landscape of images, texts,
links between images and texts, gave birth to an entire web of data, with trillions of interconnections.
This is because computers can actually do something with these concepts. Browsers, crawlers, search
engines, web services all rely on the simple common concept of interconnected documents and the
simple things that they do with these documents gave birth to the world wide web. The search result
may not be very semantical to the end user, nevertheless this, the web 1.0 and 2.0 are truly semantic to
computers.

Had there been many variations of images (such as the case with FOAF and Doublin Core), many
variations of text documents and many variations of connections between them, the world wide web
would never have been born. It is important to observe, that different variations do not refer to
different representations: JPEG, PNG etc, but rather to something conceptually entirely different. This
is so ridiculous that it is even hard to comprehend that different concepts named Image might exist,
but from the computer's perspective this is exactly what it is: foaf:Image and dcmitype:Image are
apples and wales, so to speak. The concept “Image” defined in different ontologies / APIs represent
different realities to computers, that are incompatible in nature.

This is exactly what the many disparate ontologies of today represent: a web of proprietary
representations, that are useless on a global scale because they are isolated and each requires
specialized programs to do something with them. They will never be able to create a global network
the way HTML did. The more they are, the worst it is from the prospect of communication because
they create an ever more fractured reality to computers, and even if they are more equipped than
HTML in modeling complex relations, computers will not be able to do anything with it outside the
realm of the ontology that they implement and an isolated topology. In the best case this will result in
many different semantic webs, rather than a single world wide web 3.0.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 41

2∘S.P.IN.D.L. (Patent Pending)

There has been extensive work in knowledge representation in computer science and the discipline
exists for quite a while. Earliest works in KR have been done as early as 1959, much earlier than the
birth of the Internet itself. Since then, enormous efforts have been put into compiling large ontologies
(such as the millions of assertions in Cyc), to create upper ontologies, and knowledge representations
systems, but clearly something must be missing, because in all this time, none of the systems managed
to perform outside a niche environment akin to lab conditions and it does not look as if the industry is
ready to adopt any of them as unique standard, which is the only way a web 3.0 can develop. On the
contrary, it appears that more and more standards appear, as if the industry is still searching for that
perfect ontology.

The present work is such an attempt. Having observed the inadequacies enumerated in Chapter 1, will
try to solve the knowledge representation conundrum by eliminating them. S.P.IN.D.L., stands for
Semantic-Perspective Information Definition Language, and it is an knowledge representation
formalism that takes a very different approach on how standardization is done, by taking inspiration in
how the human communication, and implicitly knowledge representation, evolved to accommodate the
particularities of their reality.

2 .1 ∘ Pa rad igms O f A Web 3 .0

SPInDL is a knowledge representation language, not an ontology, in fact, SPInDL does not have
ontologies, at least not in the sense of what ontologies are in today's KR systems.

2.1.1 ∘ Account For The Properties Of Information

Ontologies like FOAF define types / classes (example: 26), having properties and inheritance between
between classes, very much like the structures of the classical programming languages, an approach
that has been shown to be incompatible with the subjectivity and incompleteness property of
information.

example: 26 FOAF Class

Class: foaf:Person
Subclass Of: foaf:Agent, foaf:Spatial Thing
Properties Include: plan, surname, geekcode, pastProject, lastName, family_name, publications,
currentProject, familyName, firstName, workInfoHomepage, myersBriggs, schoolHomepage, img,
workplaceHomepage, knows

When it comes to knowledge representation in human language, a class / type does not exist as a
prerequisite to store information about something. Types or classes or sets do come into existence as
part of an analyses process, when a collection of objects are analyzed based on the commonalities they
have, but otherwise they do not exist, because they would limit the capability to store information
about the objects in discussion.

On the same token, human language does not have a limited amount of relations that can be used to
describe objects, such as properyOf, or subclassOf. In reality, there may be an infinity of relations
between elements of reality, attempting define a set of relations that constructs the structures of the
reality will again limit the variations of knowledge that can be captured about the underlying reality.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 41

The way these ontologies are created is the exact opposite of how knowledge is represented in human
language. In human language structuring follows analyses, and it affects only the result of the analyses,
it does not have any effect on the source of information. In these ontologies, structuring (the creation
of classes and relations) precede the existence of the source of the information, in fact the source of
the information is a materialization of the structure itself, consequently it will limit the reality (the
source of information) to whatever it is captured in the structure. No additional a-posteriori
information can exist about the source of the information within the realm of this ontology unless the
ontology itself is updated.

By contrast, SPInDLE has no definition types, only two meta-types and two meta-relations, but the
way these are used allow for an infinite number of relations, even future relations, without the
introduction of new terminology or the need for modifying the language itself.

2.1.2 ∘ A Common Reality

As a direct consequence of the constructive approach of the ontologies', combined with the subjective
way industry participants handle information, web 3.0 is now the scene of an extremely complex
architecture of types and relations originating in different ontologies each trying to reconstruct human
reality according to their own specific view. The concept namespace, which originates in the
development of the XML standard (a structuring standard) is ported into the ontology world and it is
being used to denote ownership of the ontology, basically it attributes ownership of the way reality is
constructed to a certain organization who took upon itself the responsibility to define it. The problem
stems from the word constructed (emphasized in the previous sentence), because there would be
nothing wrong if the namespace were to define how organization xyz perceives reality, but this is not
the case. To re-iterate the graveness of the problem that this approach creates let us consider an
example from Physics.

Physics is the discipline that studies reality, different laws explain how different forces of nature
behave. Some models are more complete then others and so, they are able to observe different more
profound, aspects of reality. Such would be the example of Newton's law of gravity (newton:gravity)
and Einstein's law of gravity15 (einstein:gravity). The way ontologies are constructed now, gravity (a
force of nature) would be a direct result of Newton's respectively Einstein's law of gravity and not the
other way around, resulting in two different universes, with two different gravitational forces, one
created by one of the models and one by the other. In this scenario there is no one gravity (the force of
nature) observed by two different models, but two forces of nature, created by two different models.
Some say that an upper ontology is needed which creates a new book of rules where we can specify
relations between all the different models by saying something like newton:gravity sameAs
einstein:gravity, but the concept itself is misguided. In fact newton:gravity and einstein:gravity are not
the same, they never even were intended to be the same. They may refer the same concept from
reality, but this is not what the “sameAs” relation states. The paradox rises from the fact that the
semantic relation sameAs is being used in the wrong context. SameAs assumes that the models
observe physical reality, but the model in which sameAs is used, the models in fact define physical
reality. The set of facts based on ontologies in web 3.0 are the web 3 reality from the perspective of
applications that operate with them, the same way as the totality of documents and their connections
on the Internet is the reality for a search engine, crawler, web browser suit. It might be more difficult

15 These laws are part of a larger models, but this is not relevant at this point

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Paradigms of A Web 3.0 43

to notice the similarity but foaf:Image and dcmitype:Image behave exactly in the same manner as
newton:gravity and einstein:gravity and an Internet of foaf:Images would be an alien reality to a
browser built for dcmitype:Images.

This upper ontology approach is not only used in a misinterpreted manner, but it is also impossible to
track within a large enough pool of ontologies, because it has a backwards nature. Suppose we have
newton:gravity, einstein:gravity, abc:gravity, bcd:gravity, etc:gravity as different interpretations of the
natural law of gravity. Then, organization ABC, defining abc:gravity, must constantly monitor this
upper ontology defined relations to make sure there exists a sameAs relation with all the laws of
gravity that ever were and ever will be. One cannot rely on the transitivity of the sameAs relation
because then one must also rely on the fact that any new organization XYZ contributing a new theory
to the same law of physics will make sure to specify the sameAs rules accordingly. The question
remains, up to how many variations of how many concepts can such a relation be tracked? Wouldn't it
be more simple to standardize gravity firsts, as (the law of nature), supreme, existing outside of any
definition and then relate this custom models of the law of gravity to it, (newton:gravity describes
Gravity), (einstein:gravity describes Gravity), etc. Then all these models would implicitly have
something in common, a common concept, something akin to a reality.

Knowledge represented on human language follows this common reality model. Everything that is
within a language has a correspondent in reality of humans: objects, time, space, perceptions,
emotions, activities, et cetera. Additionally the vast majority of reality is the same for all humans so
interestingly enough, even though many languages formed far apart from one another, they are still
largely compatible, given very few exceptional situations (see 1.3 Common Meaning In Human
Communication).

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 43

Illustration 4 schematically depicting the world of human communication, emphasizes how every
concept from the common reality, first passes through a subjective representation in the brain of
individuals but in order for communication to be possible, ends up again as a unique objective term in
another common realm, language. As opposed to computer reality, language does have the benefit of
having that objective reality against which it is constantly synchronized and as such, there can be any
number of languages, as long as they are synchronized against a common reality, translation between
them is possible.

In the computer reality, which lacks the fundamental common reality of humans, on account that
computers are unable to perceive it, we could substitute our reality with our language terminology. It
would no be a complete substitution, there would be many concepts that are contextually referred to in
language, but it would be none the less be a common reality: so instead of a common reality,
computers would use a common terminology. Whilst in the human world the common concept goes to
the word in the brain which is connected to the concept in the brain which is an exact correspondent
of the actual concept that exists in the reality, Illustration 4, in the computer world, the convergence
will end at the “word”.

The benefit of this approach is that there is no need to construct or impose a standard. Language
already is a de facto standard present in every single culture, business, or any other group of people for
that matter.

This would be a fundamental change with regards to how information is looked at, because the
perspective changes from structure to concepts. The priority would not be any more how the data is
structured, what properties a particular ontology captures, such as the case of foaf:Person, but rather
what the data represents, in this case Person as defined in the language dictionary. The association
carries no structural information, therefore, there really is no need for defining particular kinds of
persons. As such, foaf:Person and abc:Person would not be defining the concept, Person, that would
already be defined in the language dictionary, but rather they would refer to the common concept
Person and would only elaborate on the particularities of their view.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Illustration 4: Reality - Terminology substitution

Paradigms of A Web 3.0 45

From a communication perspective this would have an enormous impact. There is no need for any
elaborate repository system (UDDI or upper ontology), because when communication occurs the term
would automatically carry the concept with it. Bob's and Alice's applications that both handle data
about the concept of Person under their own particular structure will be able to exchange information
without ever being synchronized via an API, upper ontology or similar repositories because they refer
a common reality, in which Person has a very specific meaning.

The very fact that the word itself carries the reference to the concept in the common reality is already
some degree of semantics. Imagine that Alice is browsing through a set of data Bob has shared with
her, and within it there is a list of Persons, which Bob's application is designed to manipulate, but
Alice's computer is not. The fact that Alice's computer can rely on the fact that Bob's Person, is what
the dictionary says it to be, and the fact that Alice is fully aware of all the words in the dictionary
(even if most of them don't have any implementation associated), it can safely receive the information
from Bob's computer and present it to Alice. This would be totally impossible to do in the classical
way because a type in an API is not constrained to a concept of any kind, is a self contained entity. To
give an example, abc:Person does not necessarily have to capture information about Persons, it could
just as well be Oranges, if the organization behind the type would not care to give their types
suggestive names.

2.1.3 ∘ Simplicity & Familiarity

The other trend that is enormously detrimental to web 3.0 is the terminology invention, briefly touched
at in chapter (1.5.5). Every single API and ontology that currently exists is dominated by this trend.
Types, properties and relations like the one in example: 26, define their structure with compound
expressions that although have resemblance with dictionary terms they preserve only partial
connection with these: pastProject, lastName, family_name, publications, currentProject, familyName,
firstName, workInfoHomepage, myersBriggs, schoolHomepage, img, workplaceHomepage, etc. The
same can be observed in BFO upper ontology (SnapEntity, TimeInstance, TemporalIndex, Ontology,
TimeRegion, SpatialLocation, TemporalLocation), UMBEL (umbel:isAbout, umbel:correspondsTo),
SKOS (skos:prefLabel, skos:altLabel, skos:hiddenLabel, skos:definition), CycL (#$relationAllExists
#$biologicalMother #$ChordataPhylum #$FemaleAnimal) and all the others.

It is important to observe that these terms are resemblant of words found in the language dictionary
and so they appear to refer concepts from our reality. This resemblance however, is highly misleading
because these expressions are in fact completely new terms within their own world, with definitions
describing their role within the ontology definition that may or my not look or be similar to the one in
the language dictionary term that looks similar. They couldn't even be any other way, because often
times these are root concepts within the ontology having no reference what so ever to other concepts
within the ontology that could have some explanatory nature within the ontology itself.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 45

example: 27, FOAF Person

<foaf:Person>
 <foaf:name>John Doe</foaf:name>
 <foaf:workplaceHomepage rdf:resource="http://www.john-does-homepage.com/"/>
</foaf:Person>

workplaceHomepage in FOAF is a completely new concept that has no other explanation that the
human readable one in the specification. There is not such thing in foaf as Workplace or Homepage.
Additionally the use of words is not regulated either. There is nothing in any of these standards that
dictates that a word which is identical to the one in the language dictionary must have exactly the same
meaning as in the dictionary, which is in fact the real world meaning of that word.

The new, invented word, is a root concept within the ontology and anybody who wants or needs to use
it needs to understand it first by reading the specifications. WorkplaceHomepage is one that is quite
suggestive, even obvious, having a very good choice of words, but they are many in different
ontologies that are much harder to understand: isAbout, correspondsTo, #$relationAllExists, etc. that
have complex ontology level meanings (the way the intersection sign ⋂ has a special role in set
theory). These are really impossible to understand unless the specification is studied and understood.

Collectively these ontology definition languages and ontologies generate tens of thousands of such new
expression. It is unreasonable to expect that any system could work with such an avalanche of terms
especially when these are not linked to an existing reality but rather generate one of their own. A
system is needed that relies extensively on the real world meaning of the words, one that is based in
the common reality of humans, only than will it be possible for it to become popular within large
groups of people and create the dynamics that will ultimately generate the web 3.0.

2.1.4 ∘ Openness

The human reality is huge, enormous, it has a vast amount of objects and possibly an infinite amount
of possible relations between those objects. Any system that is to cope with such a reality cannot rely
on predefined types and predefined relations, simply because it is impossible to account for all
possibilities when these possibilities have no limit or are possibly even unknown at the time of
definition (like future concepts / relations).

If we take a look at human language, we can observe that it evolves in tandem with human needs,
human reality in a perfectly smooth, seamless manner.

2 .2 ∘ The A rch i te c tu re O f S .P. I n .D . L

The SPInDL knowledge representation language was conceived as a result of the observation of
deficiencies of current KR languages / ontologies enumerated in the previous chapters, and
consequently it delivers an alternative architecture that works around these deficiencies.

2.2.1 ∘ Binding With Language

The first and probably most radical of all paradigms that SPInDL assumes, is the existence of the
Common Reality. SPInDL does not create a reality, but rather it describes one. As a consequence, any
object or fact that is being described with SPInDL it is assumed to predate the description and
everything that is not described it is not assumed to be inexistent only not described. Because

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

The Architecture of S.P.In.D.L 47

computers do not have the possibility to observe the common reality we humans share, the SPInDL
common reality is considered to be, what has been identified in the paper as a direct binging of the
human reality, the English Dictionary.

example: 28, Definition of the Person in the dictionary

Person
1. An individual human being

At this level, the level of reality, there are no namespaces allowed and no fabrication of new words is
allowed. Expressions that are multi word in English language, such as “first name” are allowed but
only in the very form they appear in language “first name”, not “firstName” or any other combination
that could suggest something different than the human expressions. To compensate for a lack or clarity
that exists virtually in every language, homonyms, words that have multiple meanings, the first
meaning will be assumed that the dictionary defines.

example: 29, Meaning of Person in the dictionary that may create confusion

Person
...
2. An individual of specified character: a person of importance

The rest of the meanings will be substituted with appropriate expressions. In example: 29, such an
expression could be “Public Figure”. The way these expressions are used however it is not defined. It
will be at the latitude of the community (groups that use the meaning) to negotiate the appropriate
expression when such moment occurs (see 2.12 Openness, Community driven model).

2 .3 ∘ Cases , The Know ledge Base

Given the direct language binding, the ontology of SPInDL consists in fact of all the words and
expressions defined in the English Language Dictionary having the very same meaning detailed there
with the assumption that people understand and relate to these words in order to connect them with
everyday concepts that they have in their reality. Additionally to these concepts that exists in the
dictionary the ontology of SPInDL will contain the meta types, Concepts & Specifics, and the two
meta relations, Divergences & Correlations.

The knowledge, the actual facts that are captured about the concepts that exist in this outside reality,
specifics and the connections between them and other subjects, is called a case or a knowledge base.

definition: 1, Case

A case is a subjective set of facts, as captured by a particular application at a given point in
time.

Implicitly every case will contain the SPInDL ontology, hence every concept from the dictionary and
so this will serve as a common system of reference to all applications that are based on SPInDL. The
rest of the information captured by a system is considered to be particular to that system.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 47

2 .4 ∘ Concep ts & Spec ifi cs

From an existential point of view the most general differentiation that we can create with regards to
the elements present in our reality is whether they are touchable actual material things or on the
contrary, things that cannot be touched but nonetheless influence our existence. Based on this rule we
can categorize these elements as Concepts (immaterial, untouchable) elements and as Specifics
(material, touchable) or in other words concrete manifestations of the concepts.

definition: 2, Concept

Concepts are terminologies for stand alone facts, objects, phenomenons, etc, from reality in
a way that humans consider them as distinct from all the other facts, objects, etc, from
reality, they assign them individual identification (name) and definition.

The notation for the concept will be the UTF8 representation of the word in the dictionary that
represent the concept in their base form: Person, Elephant, Create, Be, Run, Time, Happiness, Future,
Past, etc.

definition: 3, Specifics

Specifics are materializations of concepts. Particular instances of a Concept.

The notation for a specific will be that of the concept of which the specific is a materialization of,
followed by a unique reference in parenthesis: Concept(x). In this case, the x in the parenthesis must be
a specific that can uniquely identify the given specific within the case.

Not every concept can have instances. For example “one” (1) is a instance of the Number concept, A
specific Person (myself for instance) is a materialization of the Person concept, a specific rock of the
Rock concept and so on. These concepts can be called suggestively “Material Concepts”. On the other
hand, concepts like “tall”, “sad”, “fast”, “run”, “dig”, “future”, “past” and many more have no
materialization, they are “Abstract Concepts”.

SPInDL does not make a differentiation between abstract and material concepts. Within a particular
case, all concepts are considered to be abstract until they have a materialization, at which point they
become material. It is not however regulated whether a concept can or cannot have a materialization.
Human reality is very complex and even seemingly immaterial concepts can have materializations on
rare occasions. Take “time” for instance: it is a highly intangible concept which although present in our
everyday life it is mostly handled as an abstract concept. Even so, we do occasional consider specific
periods of time and refer to them as “the time of something”, like (“the time of Picasso”). This is not
an isolated case, the infinitely complex human reality has many such example and as such it is better
for any knowledge representation system to remain open. It will remain at the latitude of the program
whether it will allow materialization of a concept or not.

A small note is warranted on the concept of specifics within a case. In everyday life when we have
specifics in discussion we constantly adjust context in order to easily avoid confusion about the objects
that we discuss, therefore we are tempted to talk about specifics using a characteristic (property) of it.
This is especially valid when we consider universally unique identification properties, such as the case

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Concepts & Specifics 49

of things that are regularly stored as data (people's personal information, car information, etc). But for
most objects in reality there is no such thing as an absolute identification property. An object is usually
identified (in a communication) with several traits: “The pine tree that grows in front of John's house”,
that together are sufficiently unique within the give context. Nevertheless, inside our brain we have a
very specific, absolute reference about all objects that matter to us. When we think to ourselves, inside
our heads, there is no doubt about the particular instance we refer to. We need no such description to
identify which pine tree we are talking about. References within the cases should take this aspect into
consideration and use internal pointers for all specifics which are separate from all the properties, facts
that are recorded about the given specific.

2 .5 ∘ D ive rgences & Co r re l a t i ons

The Achilles hill of every modeling language are the relations. In human reality there are countless
relations that can be set up between concepts and specifics (instances of concepts) and creating an a
priori list of relations to encompass them all is simply impossible. The attempt to do so resulted in the
biggest and most complex part of the terminology invention in current ontology languages:
“parentOf”, “memberOf”, “derivesFrom”, “superclassOf”, “propertyOf”, and so on.

example: 30

firstName › porpetyOf › Person

The result is both highly complex and limiting in terms of how many connections can be captured,
resulting in complex yet insufficient, impossible to customize data structures that are locked into
ontologies and depend heavily on the definitions the ontologies themselves define. Any new kind of
relation that may arise in the future, needs modification of the ontology and introduction of a new
definition in order to capture the relation.

Another problem is that the relations are static in nature. The relations cannot capture in their
definition specifics that are part of a Case. Person(x) is part of a particular knowledge base, a Case,
which is a manifestation of an ontology. The type Person as part of the ontology and all other types
and relations must preexist any manifestation of Person, in this case Person(x). As such, Person(x)
cannot be part of the definition chain of a relation.

It is important to mention that the concept of relation, just like the concept of type is in fact a result of
classification, structuring, the process of creation of types. While this may be important from an
analytical point of view, it has been shown int the previous chapters that from the information
capturing point of view, this is detrimental. For this reason, SPInDL will avoid the use of relations
altogether at the language definition level in order to allow for any possible connection between two
subjects.

SPInDL introduces only two meta relation as part of the language (the divergence and the correlation).
It is appropriate to call them meta relations because they are very low level containing no case specific
semantics. Together with the dictionary and the meta types “Concepts” and “Specifics”, these two
meta relations form the entire SPInDL ontology.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 49

definition: 4, The divergence

The divergence, p(S), denoted graphically by (›) is the coupling which defines the particular
angle through which the connection from a subject's perspective is connected with another
subject's perspective.

The notation p(S) means that the subject S is seen through the perspective of subject p.

When we try to describe a situation, a case, in reality we analyze subjects (specifics and concepts)
from within the context of other specifics or concepts. Everything in our world is a concept, something
from the reality around us, a feeling, a state, a time, the self, etc. and the observed fact is a
combination of a subset of these concepts.

example: 31, example of a fact

John is fast.

In example: 31 we state that a specific person is fast. When we use the word John we refer to a very
specific Person. The context we use this word in implies that everybody present in the conversation
(any consumer of information) has a special memory location where the specific person John, or more
precisely the reference to him, resides. As such, John (which in this case is the commonly used
reference to this particular memory location) is a specific from reality. The other subject used in the
sentence is the concept of being. Being, referred to by the word is, is an abstract concept which has a
very specific meaning that everybody in the audience understands. Fast, is yet another similar concept
that implicitly brings with it the hidden concept (not appearing as a stand alone word in the sentence
but rather just implied by the word fast), speed.

The object16 of the analyses is John and the trait observed that characterizes John is the speed that
describes its being.

example: 32, Perspective John is observed from

John ‹ being ‹ speed

example: 32 illustrates how John, the specific, is observed from the perspective of the being concept,
speed(being(John)), which in turn is observed from the perspective of the concept of speed and thus
creating a particular perspective from which John is viewed in the context of the stated fact.

example: 33, Correlation of John with the concept of fast

John ‹ being ‹ speed ⇢ fast

The conclusion of the analyses, the fact, states that viewed from this particular perspective John is
connected to the concept of Fast, which is another well determined concept in people's view. The
relative aspect of the fastness at this point is not necessarily relevant, because it is not captured in the
case, but rather it is considered as part of the greater context in which the case takes place.

example: 34, Correlation of John with the concept of fast

John ‹ being ‹ speed ⇢ relative › fast

If we were to be more specific about the fact that there is a relative aspect to John being fast, that
would mean that we are looking at the concept of fast, from a particular perspective, that of
relativeness, rather than the absolute view as depicted in the example: 33. So in this case “John is
relatively fast.”, example: 34.

16 The sentence is not analyzed based on the parts of the sentence (subject, predicate, etc.) but rather from an
informational perspective.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Divergences & Correlations 51

definition: 5, The Correlation

The correlation, denoted (), is the coupling which connects two particular perspectives of⇢
two subjects.

In the causal representations of the facts, the correlations will be replaced by a simple coma, since
every fact contains a single correlation and the positions of the perspectives in the fact will give the
directionality of the correlation.

Both, the divergence and the correlation are directed meta relations, because both have a sens of
directionality, causality. The correlation in the examples above shows, that although the connection
affects both, it is John that is connected to the concept of Fast and not vice versa. Similarly, the
divergence meta relation emphasizes the perspective from which a subject is being analyzed from. It
can refer an absolute subject or a perspective of it, generating an even more particular point of view.

definition: 6, The Perspective

The Concept or Specific that sits at the starting point of the divergence shall be termed,
perspective.

The actual relation, if we can talk about it in the same way as in the case of ontologies, would be the
complete path, from John to Fast, in example: 34, and contains elements from both the SPInDL
ontology (language elements plus the dictionary) and the particular case in discussion. However, these
complete paths resemble more facts than particular types of relations.

definition: 7, Fact

The full path from one subject to another via the divergences and perspectives, and
connected by the correlation is termed as a fact, denoted F(p1, p2).

Every fact will contain a single correlation and any number of divergences necessary to generate the
particular perspective the fact needs to state, F(pn(pn-1(...(p1(p0(S1))))), qm(qm-1(...(q1(q0(S2)))))). As
such, the fact is not part of the ontology but rather the case and the way these facts are formed they
allow for the development of any number of facts between the subjects of the case and within the
bigger context of the ontology.

Illustration 5 depicts a more complex case, in which a cat set on a cactus in the past, felt pain and will
not sit on that cactus or any other cactus every again.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Illustration 5: Cat & Cactus Case

S.P.IN.D.L. (Patent pending) 51

An important aspect of the knowledge capturing process is observable here: in SPInDL, the role of
perspective can be not only played by a concept, but it can also be a taken by a specific. The fact that
the Cat is correlated with Pain through the perspective of Cactus(y), in the classic ontology model
would have to be provided by a parametrized relation, the definition of which would contain a great
deal of complex assumptions. This would crowed the ontology with a lot of definitions that are difficult
to track. SPInDL on the other hand solves the communication of the fact with a very simple
construction.

In such cases when the perspective is itself part of a chain in another perspective, specifics would meet
this criteria too, a notation artifice can be employed to avoid the awkwardness and confusion of
opening and closing parenthesis:

pn(pn-1(...(p1,3(p1,2 (p1,1 (p1)) | p0(S1)))), instead of
pn(pn-1(...(p1,3(p1,2 (p1,1 (p1)))(p0(S1))))

In essence, the “)(“ parenthesis combination is eliminated and it is replaced by a vertical bar resulting
in a perspective that has a continuation but with a single imbrication chain.

It is important to mention that information does not have an absolute character. The same information
can be conveyed in many other forms, using different concepts and it is ultimately our ability to find
pattern in the use of these context that gives sense to the information captured.

2 .6 ∘ Rep resen ta t i ona l Concep ts (Pr im i t i ves)

Every system that is meant to hold information needs at the base some means by which it can
represent it, within the designated medium. In human reality we use spoken words, written words,
sounds recordings, pictures, movies, etc. In computer science, all data is encoded in binary or series of
bytes (on a slightly upper level). If we look at it from an even higher level of abstraction these byte
arrays can contain data stored in there using an algorithm. The algorithm is them used to restore the
data and allow information to be extracted. The extraction of information will be performed by the
entity capable to interpret the data. So from an data storing point of view, ultimately all information
will end up in bytes, but from a conceptual point of view it is more beneficial to look at the data at the
level where it is intelligible to the information consumer. Take for example a PNG (portable network
graphics) encoded photo. While it too will end up as a sequence of bytes in a file, to a person this is
really not relevant. The person will use an application to store it there and to restore it into its
photograph form to be able to observe it on the screen. Any other intermediate form is irrelevant. The
photo cannot be decomposed into smaller parts while maintaining information integrity.

example: 35, Primitives

These self contained material concepts, the specifics of which carry with them atomic
representations of information uniquely discernible from all other specifics are called
Primitives.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Representational Concepts (Primitives) 53

Earlier in this document we already used a different representation system, the UTF8 (2.4 Concepts &
Specifics), which is a system of encoding written words for many languages. This is necessary because
concepts need to be referred to and it is possible because every concept is in fact a Specific Concept17.

So Happiness can be represented as Concept(happiness), where the word, the UTF8 character
sequence [h, a, p, p, i, n, e, s, s], uniquely identifies the Happiness concept. Since every word in the
dictionary is a concept and the dictionary is in fact the predefined ontology, the simplification
convention can be made to eliminate the Concept(happiness) notation for concepts and use it as simply
Happiness. For other specifics that have character representations the notation is necessary,
Password(abc123), because in this case the specific password is not part of the ontology, it is part of a
particular case in which we recognize the existence of the specific password identified as abc123.

We can see that in order to be able to represent any kind of information, the bottom most subject will
always have to be a representational primitive.

example: 36, The place of primitives in every factored

Cat(ref1) ‹ like ‹ negative ⇢ Pain
Cat(ref1) ⇢ Name(UTF8(kitty))
Cat(ref1) ‹ eat ‹ past ⇢ Cactus(ref2)
Cat(ref1) ‹ sit ‹ past ⇢ Cactus(ref2)

Where Pain for instance is a simplification of the Concept(UTF8(Pain)), and so on.

SPInDL only enforces the existence of the following primitives:

• UTF8: Text, everything that in human language is represented as written text.

• Numeric: Real numbers, everything that humans represent as numbers

• Time point: A formatted text representing a date and a time

• Binary: everything that is primitive but cannot be captured as one of the above mentioned

• Reference: a primitive that is used as a placeholder for any specific that is not a primitive

Other primitive representations can exist, like text patterns, PNG, JPG, WAV, etc. These primitives
however are not regulated, implementors are free to use any form of encoding they seem fit to create
their cases: for example Meter(123) vs. Meter(one hundred and twenty three) as long the system can
represent them. The only thing enforced by SPInDL with regards to new primitives is that if an
international standard, or a sufficiently widespread term, does exist for the primitive (such as the case
the mentioned PNG, JPG) the primitive should bear this standard name and conversely, if it does bear
the standard name PNG, then it has to conform to the nominated standard.

2 .7 ∘ Prope r t i e s O f SP InD L Cons t ruc t s

SPInDL represents information as facts: causal relations between concepts and instances, but it
replaces the custom relations with correlated perspectives, dynamic constructs, concepts and specifics
thus allowing for uncapped combination of correlations between subjects.

17 A specific of the Concept concept.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 53

2.7.1 ∘ The Vanishing Of Detail

Perspectives are obtained by diverging a subject using a concept or a specific thus creating a more
detailed perspective to this subject or some perspective of it. In this latter case, the diverged
perspective becomes subject to the newly created perspective. Conceptually speaking, each perspective
is in fact a particular view of the subject it diverges from, or looking at it inversely each subject is a
less detailed view of all perspectives diverging from it.

We will note this relation where the details are vanishing cascadingly with the (⇒) symbol:

pn(pn-1(...(p1(p0(S)))) ⇒ pn-1(...(p1(p0(S))), and we interpret this: if subject S is being
observed from perspective pn, then subject S is also being observed from the perspective pn-1,
where pn is a perspective of the subject viewed for the perspective of pn-1.

This property of the perspectives also extends onto the facts, a big part of the construction of which,
are the perspectives. To exemplify, let us consider the case described in Illustration 5.

example: 37, Correlations from Illustration 5

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)

In the case described in Illustration 5 we can see that there are two correlations between cat(x) and
cactus(y), listed in example: 37. Both correlations connect cat(x) from the perspective of sitting, one
from the further diverged perspective of past one from the future.

example: 38, More generic correlations from Illustration 5

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)

example: 39, Process of correlations diverging, from Illustration 5

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)

example: 40, Process of correlations diverging even more, from Illustration 5

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)

Conceptually speaking the divergence of perspectives means that we are describing a case in ever
more detail by capturing these details by applying different perspectives. If we erase the perspectives,
like in example: 38, all that remains to be known is that there exists a correlation between cat(x) and
cactus(y). The two correlations, 1 and 2, become identical. Similarly, if we erase the divergence down
from the sit concept, example: 39, the two correlations continue to remain identical but at this stage we
know more details about the correlation, more precisely the fact, that cat(x) and cactus(y) are
correlated via the perspective of the sitting activity. It is not known whether this happened in the past,
or will happen in the future, or it could be an entirely different perspective, the fact of the matter is
that details are missing from the information. Digging even deeper, example: 40, we now know that
cat is connected through the perspective of sitting, both in the past and in the future. At this point the
two facts are not identical any more, because the perspectives diverge sufficiently that they convey
different information. As such, we can enunciate the property of facts that the existence of a particular
fact implies the existence of the more generic fact from the same line of perspective:

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Properties of SPInDL Constructs 55

If the fact F(pn(pn-1(...(p1(p0(S1))))), qm(qm-1(...(q1(q0(S2)))))) exists than the fact F1(pn(pn-1(...
(p1(p0(S1))))), qm-1(...(q1(q0(S2))))) also exists, and so does F2(pn-1(...(p1(p0(S1)))), qm-1(...
(q1(q0(S2))))) and every more generic fact down to completely generic fact Fm,n(S1, S2).

A very important aspect of SPInDL comes into view at this point. If we take a look back to example:
37 we can observe that the last perspective in the second fact is a negation, as in, the cat(x) will never
again sit on cactus(y). This may seem like a conflict because then the negative fact implies the
existence of the fact that lacks the negative in its chain of perspectives, example: 40 second fact. This
however is not the case. SPInDL does not handle logical operations. It is a description language and
correlations do not carry values of truth within them, they only describes the correlations observed /
known. SPInDL operates on the open world assumption, so a given correlation, does not mean that
every fact that starts from a given perspective exists, but rather it states that there exist at least one fact
from that given perspective, but that fact can have any number of unknown details. In the above
correlation, the negation is a detail.

example: 41, Conflicting correlations

1. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
2. Cat(x) ‹ sit ‹ future ‹ negative ⇢ Cactus(y)
3. Cat(x) ‹ sit ‹ future ‹ positive ⇢ Cactus(y)

The case could very well add another fact, example: 41 third correlation, which from a logical
standpoint is a contradiction of the second correlation. This would be perfectly legal, as this logical
aspect is not handled. SPInDL operates just like the human language. It allows for description of
facts, but the language itself does not regulate the consistency of what is being represented. Sentences
can contain nonsensical information, paradoxes, contradictions, or valid information. It is the duty of
an analyses tool, built upon rules like Logic, that can analyze and decide whether the information
represented is valid or not.

2.7.2 ∘ The Specifics And The Primitives

In the context of detail vanishing, the first name John, First Name(John)) or more precisely, First
Name(UTF8(John))), exemplifies yet another characteristics of SPInDL:

The concept of which a specific is a specific of, is in turn a particular perspective of the
root subject primitive.

example: 42, Primitive viewed as specifics of different concepts

First Name(UTF8(Jasmine))
Flower(UTF8(Jasmine))

The concept First Name, is a particular perspective of the primitive text UTF8(Jasmine). This
particular primitive is a single one but it can be looked at from the perspective of both First Name or
Flower, example: 42.

The same can be said for non primitive specifics, those that are represented by a reference
placeholder.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 55

example: 43, Reference viewed as specifics of different concepts

1. Person(Refx)
2. Individual(Refx)
3. Human Being(Refx)
4. Woman(Refx)
5. Female(Refx)
6. Mother(Refx)
7. Grandmother(Refx)
8. …
9. Plant(Refx)

A Person is a very complex concept. A specific person cannot be universally identified in a unique
manner by one of its traits therefore a system using SPInDL KR will use an internal reference as a
placeholder, and all connections to the specific will be handled through that placeholder. In SPInDL,
the concept is a particular perspective, as such, the given reference can be viewed from any number of
concepts. In example: 43, the specific that we know of and refer to by Refx, is successively considered
as a specific of numerous concepts.

Again, it is important to mention that SPInDL does not impose validation on the correctness of the
information represented. Entry 9 in example: 43 is highly unlikely to be a consistent way to reference
Refx, but it nonetheless permitted by the language.

2 .8 ∘ Bas i c Know ledge Opera t i ons

2.8.1 ∘ Perspective Equivalences

In human language there are many words that denote not a single concepts but rather the combination
of various concepts. Additionally when sentences are formed, different terminations or forms of a
word are used to express composed concepts, like possession, time, place, etc., combinations that in
SPInDL are expressed by perspectives. Because these word combinations or derivations will exist in
the language dictionary and hence people will be tempted to use them, we introduce the perspective
equivalence operation, which will allow such altered words or concepts to take on more complex
perspective but still remain compatible with the ontology:

definition: 8, Perspective equivalence

The equivalence, denoted with the symbol “=” expresses that the perspectives at the ends of
the symbol are equivalent from information conveying perspective and hence are
interchangeable in any construction p1 = p2, or in a more complex case px = pn(pn-1(...
(p1(p0)))).

example: 44, A case containing perspective equivalence

1. sat = sit ‹ past
2. Cat(x) ‹ sit ‹ past ⇢ Cactus(y)
3. Cat(x) ‹ sat ⇢ Cactus(y)

In example: 44 because of the definition sat = past(sit), we no longer need to express the perspective
in a cascading manner Past(Sit(Cat(x))), point 2, rather we can use the simplified form Sat(Cat(x)), like
in point 3. Due to the equivalence, however, the perspective chain is preserved and any analytics
software can recognize the presence of concepts in the chain.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Basic Knowledge operations 57

2.8.2 ∘ The Concept Definition

A special case of perspective equivalence is the concept definition. In natural language, we often
observe concepts defined with the aid of other concepts.

example: 45, Concept definitions

1. Midnight = Hour(24)
2. Fortnight = Count(2 | Week)
3. Adult = Full(Growth)

Not all concepts have definitions in other concepts so the ability to be expressed by other concepts is
not required by SPInDL. It is nevertheless useful because many words in the human language are
specifically designed to express specific aspects of certain concepts and such expressions are likely to
be used by certain groups of people. Being able to express the equivalence in such cases where this
exists reduces the volume of concepts expressed and covers the variations of the expressions for
concepts making knowledge representation more portable.

2.8.3 ∘ The Concept Implication

Similarly, natural language contains a lot of terms that, although are not exact equivalent of other
concepts, imply the existence of certain concepts, example: 46.

example: 46, Concept implications

1. Woman Feminine(Gender(Human))→
2. Woman Adult→
3. Interstate State(Connect(Road))→

For these cases, it is useful to have an operation to specify such implications. Denoted with an arrow
(→), the implication means that the concept on the left of the sign, determines the concept on the right
of the sign, a relation that is not reciprocal, however. As shown in example: 46 (1 & 2), the Woman
concept implies that we are talking about a human being which from a gender perspective is feminine,
however the reverse does not necessarily determine the Woman concept. Other concepts exist that
imply Feminine(Gender(Human)) namely, Gal, Girl, Lady, etc, each of them having additional
implications.

2 .9 ∘ Pa t te rns

One of the most powerful tools in our knowledge manipulation arsenal are patterns: discernible
regularities within our world. Knowledge represented with SPInDL is highly natural and excellent
candidate for manipulation using patterns.

To evidential the affinity for patterns let us consider again the generic form of the SPInDL fact, the
atom of knowledge, so to speak:

F(rn(rn-1(...(r1(r0(S1))))), qm(qm-1(...(q1(q0(S2)))))),
where r & q are known perspectives, F is the fact and S are subjects.

Owing to the properties of perspectives, 2.7 Properties of SPInDL Constructs, it can be observed that
any perspective, is in fact a pattern for a family of more specific perspectives, and any fact is a pattern
of a family of more specific facts, whether these facts and perspectives exist or not, within the
knowledge base (case):

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 57

F?(?(rn(rn-1(...(r1(r0(S1)))))), ?(qm(qm-1(...(q1(q0(S2)))))))
where ? are placeholders for various perspectives of the r & q divergences.

That being said, the beginning of the perspective is not the only place to have a wild card can be
placed, and depending on where it is being placed it changes the conceptual meaning of the operation
that is being performed.

2.9.1 ∘ The Faceting

The simplest form, and the one that comes out directly from the properties of SPInDL, 2.7, is the
faceting.

?(qm(qm-1(...(q1(q0(S2)))))

The meaning of faceting, placing the wild card in front of the divergence, or more precisely, replacing
ever more perspectives in the left of a divergence and by this creating an ever more generic view of a
subject, is to identify the various facets a diverged subject is looked at from. Let us consider an
example:

example: 47, The faceting pattern

1. Feminine(Gender(Human(ref)))
2. ?(Gender(Human(ref)))
3. ?(Human(ref))
4. ?(ref)
5. ...
6. Young(Age(Human(ref)))

In example: 47 we consider ever more generic perspectives of the specific Human subject stored at ref
all the way to where we just look at a raw reference ref, from no perspective at all.

If we look at this from an information extraction angle, a pattern match on ?(Human(ref)), will yield a
collection of divergences of Human(ref), more specifically all the various perspectives the specific
Human(ref) divergence is looked at from. In the case presented, Young(Age(...)) and
Feminine(Gender(...)).

2.9.2 ∘ The Generalization

The opposite way to use the pattern is to place the wild card onto the other end of the perspective
chain, or in the causal representation inside the perspective in order to obtain an ever more generic
subject.

qm(qm-1(...(q1(q0(?)))), qm(qm-1(...(q1(?)))

This shifts the importance placed on subject onto the perspective. As we generalize, we no longer look
at the subject as a specific instance, or a concept, but we rather look at the case, the knowledge base,
from the from the standpoint of the perspectives that we employ:

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Patterns 59

example: 48, The generalization pattern

7. Feminine(Gender(Human(ref)))
8. Feminine(Gender(Human(?)))
9. Feminine(Gender(?)))
10. Feminine(?)
11. …
12. Young(Age(Human(ref)))
13. Young(Age(Human(?)))
14. …
15. Young(?)
16. Feminine(Gender(Horse(ref1)))
17. …

example: 48 is a reverse of example: 47. We can see how we gradually loose site of the Specific
Human we started from and move upwards onto the Human as a concept, then we loose that too and
look at the Gender as a perspective of various generic things, and so on.

If we were to extract information on the Feminine(Gender(?)) pattern in our case, we would be
obtaining a collection of all the subjects in our knowledge base that are looked at from the perspective
of Feminine(Gender(?)), namely: Feminine(Gender(Human(ref))) and Feminine(Gender(Horse(ref1))).

2.9.3 ∘ The Observation Pattern

There is a notable hybrid pattern that emerges from the combination of the Generalization and
Faceting patterns,

?(qm(qm-1(...(q1(?))))

the answer of which is a collection of divergences that are being observed on a family of subjects. In a
derivative of example: 48, we can inquire with the pattern, ?(Human(?)), which will tell us both, the
series of perspectives that are observed on any subject that is Human, namely Gender, Age, and their
divergences Feminine(Gender) and Young(Age) respectively, but also the family of subjects, in our case
references, on which we observe these perspectives, namely which references are looked at from the
Human perspective.

The observation pattern can be considered a particular case of either the faceting or generalization
pattern, as it yields an intermediary result which can be further analyzed by a more restrictive pattern,
from either types.

The enumerated patterns are all simple, perspective patterns, because they only focus on the way
perspectives are used on subjects. Patterns however can also be used with facts, by replacing the two
divergences in the fact with any of the previous perspective patterns, faceting, generalization or
observation.

definition: 9, The Property

The resulting pattern is matching facts not perspectives, a construction that is termed a
property.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 59

Based on the type of the pattern used in place of each divergence, we can categorize the properties as
follows:

2.9.4 ∘ Facet Coupling

As the name suggests, this pattern will be based on coupling known Facets and will yield families of of
facts containing subjects that are coupled on the specified facets. As a result, both divergences in the
fact will be replaced with generalizations so the general form becomes:

F?(rn(rn-1(...(r1(r0(?))))), qm(qm-1(...(q1(q0(?))))))

To emphasize the behavior within the context of the Cat & Cactus scenario, the pattern F?(Past(Sit(?),
Cactus(?)), will match any fact in the case which tells about any subject that sat in the past on any
cactus.

2.9.5 ∘ Subject Coupling

The exact opposite of facet coupling is where we replace both divergences with facets instead of
generalizations. In this case the generic form of the property becomes:

F?(?(rn(rn-1(...(r1(r0(S1)))))), ?(qm(qm-1(...(q1(q0(S2)))))))

and will yield a collection of facts containing families of divergences that have the same subjects. In a
more narrative way, this pattern shows all the various perspectives used to connect two sub
perspectives of two specific subjects. In the same example as presented above, F?(?(Cat(ref)), ?(ref1)),
we will obtain all the facts that connect ref seen from the perspective of Cat and ref1, seen plainly.

2.9.6 ∘ Causation

Facts, have a directionality, which gives us a sense of causality, even though facts are not necessarily
cause & effect constructions in the literal sense of the expression. It is however useful to employ the
terminology in order to emphasize the nature of a collection of facts where all the arrow point towards
a single subject, or perspective of it.

F?(rn(rn-1(...(r1(r0(?))))), ?(qm(qm-1(...(q1(q0(S2)))))))

A property construction with a generalization on the left and a facet on the right, as shown above, will
yield a collection of facts formed by a family of subjects seen from a predefined perspective that
converge towards a family of perspectives of a single well defined subject. Within the context of our
cat and cactus example, the pattern F?(Past(Sit(?)), ?(Cactus(x))), will give us all the subjects that ever
sat on the specific Cactus(x), seen from any perspective.

2.9.7 ∘ Effecting

Effecting is the opposite property to causation. In this pattern, the roles are switched and the
generalization is on the right and the facet is on the left:

F?(?(rn(rn-1(...(r1(r0(S1)))))), qm(qm-1(...(q1(q0(?))))))

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Patterns 61

creating a geometrical construction where the arrows point outwards from a family of perspectives of
a given subject, that are sitting at the center, to a multitude of subjects seen from a well defined
perspective. This gives the impression that by using the pattern one is observing the ramifications, the
effects, of a subject.

To see a concrete exemplification, let us look again at the cat & cactus example. The construction
FE(Sit(Cat(ref)), ?), will be able to yield all the things, cactus and whatever else, our specific Cat has
ever sit or will ever sit on, that we know of.

2.9.8 ∘ The Infinity Pattern

The most generic of all patterns, which is least restrictive in terms of where we put the wild card, can
generate a very large number of possible combinations, hence the the tentative term, infinity pattern.
The parameters of an infinity fact are both observations, leading to a general form:

Fi(?(rn(rn-1(...(r1(r0(?)))))), ?(qm(qm-1(...(q1(q0(?)))))))

and will yield families of divergences connected to other families of divergences. These highly
complex pattern matches can be used in analyses and statistical observations to determine ways
information are connected. For example Fi(?(Cat(?)), ?(Cactus(?))), can tell us the multitude of ways
cats are connected to cacti. This in itself may not be very useful, but in a very large knowledge base,
where many relevant18 facts exist between cats and cacti the determination can be made that: sitting on
cacti is painful to cats, even if this information is not clearly stated in the knowledge base.

2 .10 ∘ Advanced Know ledge Opera t i ons

Basic knowledge operations are designed predominantly at investigating, querying, the knowledge base
in order to discover information. The natural next step are the operations that allow us to augment the
knowledge operations that add to the information already existing in the knowledge base.

Similarly to the basic operations, the advanced operations are also based on patterns.

2.10.1 ∘ Knowledge Evolving

We have spoken earlier about the imprecise characteristics of information. It has been shown that no
matter how much we explore a subject there will still be room for more information to be extracted
and that it is really at the latitude of each individual observer to extract only what is needed and to
ignore the rest.

Unlike the traditional API based data storage systems, SPInDL does not suffer from structure lock in.
Patterns can be used to evolve the entire knowledge base into a new form, once the need arises to
store more details.

The principle behind it is to take a pattern, any of the previously enumerated and perform a
transformation into another pattern. To take the most generic form:

?(qm(qm-1(...(q0(?)))) >> ?(rn(rm-1(...(r0(?))))

or properties:

18 Relevant in therms of the determination, the conclusion drawn.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 61

Fpq(?(pn(pn-1(...(p0(?))))), ?(qm(qm-1(...(q0(?)))))) >>
Frz(?(rn(rn-1(...(r0(?))))), ?(zm(zm-1(...(z0(?))))))

To see a concrete example, let us consider that we know that at some point in time the cat, from sitting
perspective, and the cactus are connected, F(Sit(Cat(ref)), Cactus(refc)), but the time perspective of is
not observed in our knowledge base. Since we are not observing time, it is really irrelevant to mention
past, present, future, these concepts do not yet exist in our knowledge base. The need however arises to
create an orderly sequence in our information in order to be able to mention that the cat will never sit
on a cactus again point at which time, past, present and future, become important.

We can now perform the evolution: ?(?(Sit(?)), ?) >> ?(?(Past(Sit(?))), ?), which essentially means that
whatever was sitting in our knowledge base, was doing so in the past. After the transformation which
augmented our knowledge base with a new dimension, we are free to add the fact that the cat will not
sit on the cactus in th future, Ff(Negative(Future(Sit(Cat(ref)))), Cactus(refc).

2.10.2 ∘ The Axiom

Another knowledge extending operation is what is tentatively dubbed the axiom, when one or more
properties are known to exist in tandem, given a fixed set of wild cards.

F1(Xp(p1
n(p1

n-1(...(p1
0(X))))), Yp(q1

m(q1
m-1(...(q1

0(Y)))))) &
F2(Xp(p2

n(p2
n-1(...(p2

0(X))))), Yp(q2
m(q2

m-1(...(q2
0(Y)))))) &

…
Frz(Xp(rn(rn-1(...(r1(r0(X)))))), Yp(zm(zm-1(...(z0(Y))))))

where Xp and Yp, X, Y are wild card perspectives and subjects respectively with the particular
characteristics that are the same across an axiom.

example: 49, Axiom

1. F1(Past(sit(X)), Y) & F2(Y(sit(X)), Pain) & F3(Negative(future(sit(X)), Y)
2. F1(Past(sit(cat(ref))), Cactus) & F2(Cactus(sit(cat(ref))), Pain) & F3(Negative(future(sit(cat(ref))),

Cactus)

example: 50 point (1) states that, if something, denoted by X, sat on something else, denoted by Y, and
X through the perspective of Y is connected to pain, and also X not sit on Y in the future any more are
connected such that they exist in synergy.

We can clearly see that if we replace X by Cat, or Cat(ref) if we talk in specifics, and we replace Y
with Cactus, than we obtain the scenario described in Illustration 5, the cat which is not sitting on a
cactus in the future the way it did on the past, as pain was a part of it.

2.10.3 ∘ The Causal Axiom

An extends form of the axiom is the causal axiom in which some of the facts are considered to be a
consequence of the other facts:

F1(Xp(p1
n(p1

n-1(...(p1
0(X))))), Yp(q1

m(q1
m-1(...(q1

0(Y)))))) &
F2(Xp(p2

n(p2
n-1(...(p2

0(X))))), Yp(q2
m(q2

m-1(...(q2
0(Y)))))) &

…
Fw(Xp(pw

n(pw
n-1(...(pw

0(X))))), Yp(qw
m(qw

m-1(...(qw
0(Y))))))

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Advanced knowledge operations 63

=>>
Frz(Xp(rn(rn-1(...(r1(r0(X)))))), Yp(zm(zm-1(...(z0(Y))))))

…

We can use the (=>>) sign to separate the causing facts from the caused facts.

example: 50, Axiom

3. F1(Past(sit(X)), Y) & F2(Y(sit(X)), Pain) => F3(Negative(future(sit(X)), Y)
4. F1(Past(sit(cat(ref))), Cactus) & F2(Cactus(sit(cat(ref))), Pain) => F3(Negative(future(sit(cat(ref))),

Cactus)

Deduction is a natural result of an axiomatic construction be that causal or non causal. If we observe
all but one of the facts present in the axiom that would imply the existence of the latter one, whether
this is clearly stated in the case or not.

2.10.4 ∘ Behavior

A less restrictive version of the axiom is the behavior operation, which unlike the axiom, is not taken
for granted but has the potential to evolve out of the knowledge base.

Let us consider again the axiom at example: 50. If we replace the X and the Y with questions marks
(?), then the elements of the construction become simple properties:

F?(Past(sit(?)), ?),
F?(?(sit(?)), Pain),
F?(Negative(future(sit(?)), ?)

If through a pattern recognition analyses, it is observed that a considerable proportion of (X, Y) pairs
have at least two of these facts present, then we might be entitled to consider this a behavior. A
behavior means that although the existence of the resulting axiom is not a certainty, it is a likely
outcome.

2 .11 ∘ Types

After our knowledge system has been liberated from the constraint of types, it is time to look at this
extremely useful analytical tool within the context of this new pattern based approach. Although types
cannot be used efficiently into storing information, for reasons presented earlier in the manuscript, it
can be very useful when manipulating concepts and specifics to consider collections of perspectives
and facts pertaining to these concepts and their specifics, rather than handle individual facts on their
own. Information is subjective to each observer, but when observers observe the same concept
repeatedly it is likely that they will be observing from more or less the same perspective every time.
This represents the domain of interest of the observer with regards to the given concept, shortly its
type.

2.11.1 ∘ The Type Pattern

The principle behind the type is, repeatability. This means that one expects a specific of a concept to
have a certain collection of properties (fact patetrns) associated with it whether such facts are
observed, and thus be part of the knowledge base, or not observed and thus be unknown.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 63

Illustration 6 depicts a subjective way of looking at Person in which the domain of interest are first
name, last name and birthday. In this scenario, nothing else matters to the observer, but at the same
time, the observer, will assume that these facts are characteristics of any specific Person, and as such
any person in its universe is expected to have them.

example: 51, The facts considered in the simple type in Illustration 6

F1(Date(Birth(Person(?))), Date(?))
F2(First Name(Person(?)), First Name(?))
F3(Last Name(Person(?)), Last Name(?))

These perspectives will change from observer to observer, but the principle remains: in one of the
chains of perspective in every property that is part of the Type, there can be found the concept a type
of which the Type is.

definition: 10, Type

A type, TO
x, that represents the subjective view of observer O with respect to concept X, is a

collection of properties having the form: O:X = {Fi(?(X(?)), ?) or Fj(?, ?(X(?))), i = 1...n, j
= 1...m}

It is important to reiterate that types in SPInDL do not determine the knowledge base, they are only a
tool to manipulate the knowledge base. Illustration 6 depicts a type of Person with minimalistic
information observed, but this does not stop any specific person in the knowledge base from having
any number of other facts that connect to or from it. As a matter fact, there could be many other types
of Person with different sets of properties.

While types could be predefined based on initial need, they can also be a product of pattern
recognition as the knowledge base grows. We could consider a type as being the collection of
properties matching the form in definition: 10 for a given concept, such that at least a threshold of
specifics of that concept are found to match all the patterns in the type. In such a setup, types become
a constantly evolving tool that depict the particular way a certain observer is capturing reality at a
particular point in time.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Illustration 6: A very simple type of Person

Types 65

2.11.2 ∘ The Name Space

From the definition of the type it is noticeable that the notation for it, O:X, resembles remarkably the
notation of the types in classical ontologies, where O stands for the name space and X stands for the
type name. While in both cases the name space role is to attach the type a proprietary aspect, the
similarities end there.

In the classical ontologies the name space's role is to ensure uniqueness in the denomination of the
type, and thus avoid name clashes. If the name space is unique, which it must be in the world of
ontology, then whatever comes after the colon the combination of the two remains unique, even if the
types themselves happen to be the same: abc:Person, bcd:Person, there is no clash between the two full
names. However, an exact match between the type names (whatever comes after the colon) is only a
product of coincidence: Person in abc has nothing in common with Person in bcd. They could both
represent the concept of Person, or only one of them could do so, or the case may be that none of
them actually stand for the Person concept. As shown in more detail in 1.6 Fractured Realities, the
two define two different realities.

By contrast SPInDL takes the exact opposite approach: if the local part of the type name happens to
be the same, then by definition, the two types represent the same concept, they just describe different
sets of properties about the concept. abc:Person and bcd:Person are two types of the same concept,
Person, each in the subjective view of name space owner abc and bcd respectively. With this approach,
SPInDL allows every subjective individual or organization to express their particular need to observe a
concept without destroying the common reality in which all organizations need to operate.

2.11.3 ∘ Information Transfer

In computer operated applications, a specific, an instance of a type, such as a specific Person, it is
considered almost exclusively as being the sum of its parts. The values associated with the instance
define the instance, some of them may be unique, like personal id numbers, social security numbers,
passport numbers, fingerprint data, etc, others are not unique such as first name, last name, and so on.
These unique attributes of a person define the person, pinpoint the person in a database. By contrast,
we humans don't rely on the uniqueness of any characteristics of a specific, our minds don't process
uniqueness in the manner computers do. To us the concept of uniqueness doesn't really exist. We live
in an open world where everything that is unique needs only be unique enough and it is only so until it
proven otherwise. At that point another attribute is appended that makes the specific unique (if
possible) and so on. We live in a very dynamic world where things do not have mathematical rigor.

Even such, when we refer to an object, a person for instance, a mother, a father, we know it in our
minds very, very clearly who we refer to. In our minds there is no doubt about the uniqueness of our
reference. The multitude of facts we know about that reference are associated with that reference but
they don't define it. This uniqueness however cannot be communicated. It is impossible for me to
transmit the reference I have in my brain with regards to my mother for example to a third person, so I
do the next best thing, and I use characteristics that are sufficiently unique to both of us (me and the
person I am communicating to), to establish common reference. These characteristics would be a
subset of the aforementioned facts that I know about the object intersected with the facts my
interlocutor knows about the object, because whatever I transmit will pinpoint a reference in his brain
that I expect uniquely refers the same thing my reference does.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 65

If we are to generalize this process of establishing common reference, we have to consider the fact
that each person, or groups of persons, see objects within their own particular domain of interest. As
such, they will know different facts about objects, facts that are relevant to them. Individuals or groups
develop stereotypes that capture various perspectives of concept specifics, stereotypes that consist of
patterns of facts known to exist with regards to concepts.

This kind of dynamics that comes into view whenever we talk about human communication is
essential to human reality because it accounts for the impreciseness and subjectivity of information. If
this would not be accounted for some part of the communication will suffer: either the some of the
parties in the communication would not be allowed to have custom aspects, or common reference
could not be established.

The SPInDL model for communication is an attempt to mimic this openness of language by relying on
the established common reality, type patterns and the operations that are possible to do with these
patterns, or more precisely sets of patterns.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Illustration 7: Person seen by a medical institution

Illustration 8: Person seen by a tax office Illustration 9: Person seen by an HR
company

Types 67

Illustration 7, 8 and 9 depict graphically the way different institutions observe the concept of Person. It
can be seen that true to their domain of interest with regards to the persons, some of the perspectives
observed are the same, while others differ. A financial institution simply has no interest in the allergies
a person might have, while a clinical institution would similarly have no interest in the CV or bio of a
person. It ca be expected though, if two institutions or people for that matter want to communication
about a concept, that they would also observe similar facts too, such as first name, last name, date of
birth, etc. If such common perspectives do not exits, it is hard to envision that there would be any
relevant information one could transmit to the other, like the case is with the stock market proposition
between the Pirahã and the English Speaking Broker in chapter 1.3 (Common Meaning In Human
Communication).

While the fact that these institutions would see the concept of Person differently, is no strange concept
to either API based applications or ontologies, what they lack is common grounds to establish the fact
that although their view is different, the concept in discussion is common. Because of this
communication is by no means out of the box, but rather a tedious procedure the result of which is a
common exchange layer, procedure that needs to be repeated with every communicating partner.

In the concept centric approach of SPInDL, there is no ambiguity about the concept in discussion,
therefore any application that implements SPInDL can expect concept terminologies to point to the
same thing, in our example Persons. Therefore when the need for communication arises the only thing
that needs to be established is the set of common perspectives. The party that does not observe /
handle the allergy perspective for instance would have no operations defined to work with that
perspective. In the best case it could have generic operations such as storing, displaying, but the
relevance of the perspective ends there. There is no information in that perspective to this party. The
essence of the transferable information comes from the common perspectives: these perspectives are
information to the receiver and are available from the provider.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

S.P.IN.D.L. (Patent pending) 67

example: 52, Types of Person

Tax:Person{
F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(SSN(Person(?))), Number Sequence(?)),
F(AVG Income(Person(?))), Number(?)),
F(Current(Employer(Person(?)))), Company(?)),
F(bio(Person(?))), UTF8(?)),

}
Medical:Person{

F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(brith(Person(?))), date(?)),
F(SSN(Person(?))), Number Sequence(?)),
F(BMI(Person(?))), Number(?)),
F(Allergy(Person(?))), Allergen(?)),

}
HR:Person{

F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(AVG Income(Person(?))), Number(?)),
F(Current(Employer(Person(?)))), Company(?)),
F(bio(Person(?))), UTF8(?)),
F(Photo(Person(?))), PNG(?))

}

example: 52 shows the various kinds of Persons that exist in our hypothetical community each
defining its own type to handle the concept of Person. In this setup, the information exchange pattern,
they Common Type can be established in an ad-hoc manner, there is no need for complicated API
correlation between two different organizations. All there is to it is to match the types of each party
and establish their intersection to obtain the set of common pattern facts observed by each them with
regards to a Concept.

example: 53, HR & Tax:Person. The common type for HR and Tax perspectives

HR & Tax:Person{
F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(AVG Income(Person(?))), Number(?)),
F(Current(Employer(Person(?)))), Company(?)),
F(Last Name(Person(?))), Last Name(?)),
F(bio(Person(?))), UTF8(?)),

}

example: 54, Tax & Medical:Person. The common type for HR and Tax perspectives

Tax & Medical:Person{
F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(SSN(Person(?))), Number Sequence(?)),

}

example: 53 and example: 54 show two such common types that can be used for information exchange
between an HR and a Tax institution and between a Tax and Medical institution respectively.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Openness, Community driven model 69

2 .12 ∘ Openness , Commun i ty D r i ve n Mode l

An interesting byproduct of this approach is, the Blanket Type, example: 55, representing an
exhaustive set of all properties that are observed by any member of a community. If the common type
is the intersection of the property sets, the blanket type would be the union of properties observed by
all parties.

example: 55, Blanket Type: all perspectives captured by the community

HR:Person{
F(First Name(Person(?)), First Name(?)),
F(Last Name(Person(?))), Last Name(?)),
F(date(birth(Person(?))), date(?)),
F(SSN(Person(?))), Number Sequence(?)),
F(BMI(Person(?))), Number(?)),
F(Allergy(Person(?))), Allergen(?)),
F(AVG Income(Person(?))), Number(?)),
F(Current(Employer(Person(?)))), Company(?)),
F(Last Name(Person(?))), Last Name(?)),
F(bio(Person(?))), UTF8(?)),
F(Photo(Person(?))), PNG(?))

}

Such blanket types, would be an excellent indicator of community trends and could serve as
implementation reference to any newcomer into the community.

Looking at this globally and on the long term from cooperation / communication perspective, the
world of types, this Common Reality, will become a dynamic, evolving place, where based on the
frequency of occurrence certain properties can become the norm or on the contrary can become
special situations. This process however, should not impact the community, because properties do not
define concepts.

Due to the large amount of knowledge that needs to be modeled in order to aid various business needs
the common reality would seem to grow impossibly large to maintain with time. But this picture stems
from the perception of today's standards, where they are created and maintained in an
institutionalized, top to bottom, manner.

In this common reality driven model, standards are not created, they emerge. By fixing the concept,
which is already standardized in human reality, and creating a cooperation based common patterns,
participants will determine the nature of each type as best needed. As the system is used in common,
patterns will emerge for various industries and newcomers can adapt to these patterns to better aid
communication. The elasticity of the system however does not enforce them to use the pattern as
defined up to that point, and if they have special needs they can freely implement them, potentially
benefiting the industry with new and improved types.

As a property is used more and more frequently (for ex. exceeding 85% of all implementations) the
property can become standard and thus types evolve. Future implementers can make educated
decisions of how to best adapt to the domain(s) they belong to in order to facilitate communication
within their domain. If we presume the participants interest is to communicate, it is reasonable to
assume that more often than not, they will make compromises to adapt. But the freedom of not having
to fully comply with the norm yet still be able to communicate is essential to maintain participants
implication.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

Conclusion 69

3∘Conclusion
On a global scale, with thousands or millions of participants in the community the elimination of the
need for developing a common API between every two parties represents not only a massive reduction
in complexity, effort and cost but a complete paradigm shift of how communication happens. The
complexity of establishing common ground between structure based systems raises exponentially with
the addition of new participants in the discussion by either requiring the implementation of
exponentially more common APIs or by enforcing an ever more rigid common API that grows
increasingly incompatible with community needs and change. There is no compromise, either
approaches crash after just a iterations, and the result is an Internet of impossible to reconcile
standards. The approach is simply contrary to evolution, contrary to human nature.

By contrast, natural language evolves it is not reinvented, it is not pre-created by a higher forum and
not maintained by any organization. It is a grass roots effect. The crowd builds it and with every new
participant language becomes richer, more complete, without becoming more difficult to master.
Language can just as easily communicate the complex information of our days as it could the works of
Shakespeare, the teaching of ancient Greeks and probably those of cave men. And it simply comes
natural to expect it to continue conveying whatever complexities our future reality will hold.

The Semantic Perspective Information Definition Language is an attempt to replicate this elasticity
and versatility in absence of which there will be no global scale semantic web. Whether SPInDL will
prove to live up to the enormous power of natural language remains to be determined, not by one
organization, but by the crowd. In any case it is a goal that we must strive for and change is a paradigm
shift that we must accept.

Nothing in nature is meant to survive if it does not embrace evolution. Nature is Evolution. Our world
evolves, we evolve, everything that is us and around us changes with time. If we are to cope with this
change, we either create and adopt new tools all the time, or we create one tool that can change
together with us. The choice I think, is obvious.

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

References 71

4∘References
The Principles of a Semantically Rich Data Representation System: Stefan
Harsan Farr, The Principles of a Semantically Rich Data Representation System,
2013

Chenho Kung, 1991: Chenho Kung, The Object-Oriented Paradigm, 1991

Walsh Norman, 1997: Walsh Norman, A Guide to XML, 1997

Dan Brickley, Libby Miller, 2010: Dan Brickley, Libby Miller, FOAF Vocabulary
Specification 0.98, 2010, http://xmlns.com/foaf/spec

An Introduction to the Syntax and Content of Cyci: Cynthia Matuszek, John
Cabral, Michael Witbrock, John DeOliveira, An Introduction to the Syntax and
Content of Cyc,

ResearchCyc: Cycorp Inc., ResearchCyc, Development Platform, 2013,
http://www.cyc.com/platform/researchcyc

Upper Mapping and Binding Exchange Layer (UMBEL) Specification: Michael
Bergman, Frédérick Giasson, Upper Mapping and Binding Exchange Layer
(UMBEL) Specification, 2013

SPATIAL COGNITION AND COMPUTATION: Pierre Grenon, Barry Smith, SPATIAL
COGNITION AND COMPUTATION, 2004

Ontology for the Twenty First Century: An Introduction with Recommendations:
Andrew D. Spear, Ontology for the Twenty First Century: An Introduction with
Recommendations, 2006

Basic Formal Ontology Users: INFOMIS, Basic Formal Ontology Users, 2013,
http://www.ifomis.org/bfo/users

UMBEL Projects: , UMBEL Projects, Visited - 2013,
http://umbel.org/community/projects

– Copyright © 2014, Stefan Harsan Farr – Patent Pending –

	1∘ The Case for common reality
	1.1 ∘ Information
	1.2 ∘ Subjectivity & Incompleteness
	1.2.1 ∘ Information transfer (communication)

	1.3 ∘ Common Meaning In Human Communication
	1.4 ∘ Information in Computer Programming
	1.4.1 ∘ Types, Static Reality
	◊ Primitives
	◊ Variables
	◊ Arrays & Matrices, Graphs, Trees & Maps
	◊ Structures

	1.4.2 ∘ Operations & Functions
	1.4.3 ∘ Functional confusion
	1.4.4 ∘ Type confusion
	1.4.5 ∘ Semantics, The meaning Of things
	1.4.6 ∘ Object Oriented. The All in one Model
	1.4.7 ∘ Comparison with the Relational Model
	1.4.8 ∘ Web Services, the XML promise
	◊ XML
	◊ XSD
	◊ XML-RPC, Web Services and the UDDI

	1.4.9 ∘ Why These standards fail to deliver

	1.5 ∘ Semantic Web and RDF/OWL ontologies
	1.5.1 ∘ Ontology, The Linked Data API
	1.5.2 ∘ Ontology, A concrete example
	1.5.3 ∘ Upper Ontologies
	1.5.4 ∘ The Ontology Maze
	◊ CYC
	◊ UMBEL
	◊ BFO

	1.5.5 ∘ Some Comparative aspects
	1.5.6 ∘ The Demotion of upper ontologies

	1.6 ∘ Fractured Realities
	1.6.1 ∘ The semantics of Web 1.0, 2.0 & 3.0

	2∘ S.P.IN.D.L. (Patent pending)
	2.1 ∘ Paradigms of A Web 3.0
	2.1.1 ∘ Account for the properties of information
	2.1.2 ∘ A common reality
	2.1.3 ∘ simplicity & Familiarity
	2.1.4 ∘ Openness

	2.2 ∘ The Architecture of S.P.In.D.L
	2.2.1 ∘ binding with Language

	2.3 ∘ Cases, The knowledge base
	2.4 ∘ Concepts & Specifics
	2.5 ∘ Divergences & Correlations
	2.6 ∘ Representational Concepts (Primitives)
	2.7 ∘ Properties of SPInDL Constructs
	2.7.1 ∘ The vanishing of Detail
	2.7.2 ∘ The Specifics and the Primitives

	2.8 ∘ Basic Knowledge operations
	2.8.1 ∘ perspective equivalences
	2.8.2 ∘ The concept definition
	2.8.3 ∘ The Concept Implication

	2.9 ∘ Patterns
	2.9.1 ∘ The Faceting
	2.9.2 ∘ The Generalization
	2.9.3 ∘ The Observation pattern
	2.9.4 ∘ Facet Coupling
	2.9.5 ∘ Subject Coupling
	2.9.6 ∘ Causation
	2.9.7 ∘ Effecting
	2.9.8 ∘ The Infinity Pattern

	2.10 ∘ Advanced knowledge operations
	2.10.1 ∘ Knowledge Evolving
	2.10.2 ∘ The Axiom
	2.10.3 ∘ The Causal Axiom
	2.10.4 ∘ Behavior

	2.11 ∘ Types
	2.11.1 ∘ The Type Pattern
	2.11.2 ∘ The Name Space
	2.11.3 ∘ Information transfer

	2.12 ∘ Openness, Community driven model

	3∘ Conclusion
	4∘ References

